Skip to main content
Log in

The formation of layers of porous crystalline tin dioxide from a composite on the basis of multiwalled carbon-nanotube arrays

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A new method for the synthesis of porous crystalline tin-dioxide (SnO2) layers from composites on the basis of multiwalled carbon nanotubes (MWCNTs) and nonstoichiometric amorphous tin oxide (MWCNT/SnO x ) is proposed. An MWCN/SnO x composite layer produced by magnetron sputtering is annealed in air atmosphere at 500°C for 30 min. A homogeneous porous layer comprised of crystalline SnO2 spherical particles with a size of about 0.1 μm is obtained as a result. In the process of annealing, nearly all the amount of carbon is removed in the form of gaseous oxides (only a small amount remains in the upper part of the porous SnO2 layer). The structural defectiveness of nanotube walls, which increases because of the magnetron deposition of tin, plays a crucial role in the carbon oxidation and destruction of MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Yin, S. Chai, F. Wang, et al., Ceram. Int. 42, 9433 (2016).

    Article  Google Scholar 

  2. C. Li, M. Lv, J. Zuo, et al., Sensors 15, 3789 (2015).

    Article  Google Scholar 

  3. S. N. Nesov, V. V. Bolotov, P. M. Korusenko, S. N. Povoroznyuk, and R. V. Shelyagin, Phys. Solid State 55, 1289 (2013).

    Article  ADS  Google Scholar 

  4. V. V. Bolotov, P. M. Korusenko, S. N. Nesov, S. N. Povoroznyuk and O. Yu. Vilkov, Phys. Solid State 58, 997 (2016).

    Article  ADS  Google Scholar 

  5. M. D. Manyakin, S. I. Kurganskii, O. I. Dubrovskii, et al., Comp. Mater. Sci. 121, 119 (2016).

    Article  Google Scholar 

  6. P. M. Korusenko, S. N. Nesov, V. V. Bolotov, et al., Nucl. Instrum. Methods Phys. Res. B 394, 37 (2017).

    Article  ADS  Google Scholar 

  7. Yu. V. Fedoseeva, A. V. Okotrub, L. G. Bulusheva, et al., Diam. Relat. Mater. 70, 46 (2016).

    Article  ADS  Google Scholar 

  8. O. K. Alexeeva and V. N. Fateev, Int. J. Hydrogen Energy 41, 3373 (2016).

    Article  Google Scholar 

  9. G. Yang, B.-J. Kim, K. Kim, et al., RSC Adv. 5, 31861 (2015).

    Article  Google Scholar 

  10. Y. V. Fedoseeva, L. G. Bulusheva, A. V. Okotrub, et al., Sci. Rep. 5, 9379 (2015).

    Article  Google Scholar 

  11. L. G. Bulusheva, A. V. Okotrub, Y. V. Fedoseeva, et al., Phys. Chem. Chem. Phys. 17, 23741 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Nesov.

Additional information

Original Russian Text © S.N. Nesov, P.M. Korusenko, V.V. Bolotov, S.N. Povoroznyuk, K.E. Ivlev, D.A. Smirnov, 2017, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 43, No. 21, pp. 16–23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesov, S.N., Korusenko, P.M., Bolotov, V.V. et al. The formation of layers of porous crystalline tin dioxide from a composite on the basis of multiwalled carbon-nanotube arrays. Tech. Phys. Lett. 43, 961–964 (2017). https://doi.org/10.1134/S1063785017110074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785017110074

Navigation