Skip to main content
Log in

Spin Physics of Excitons in Colloidal Nanocrystals

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

We present a review of spin-dependent properties of excitons in semiconductor colloidal nanocrystals. The photoluminescences (PL) properties of neutral and charged excitons (trions) are compared. The mechanisms and the polarization of radiative recombination of a “dark” (spin-forbidden) exciton that determines the low-temperature PL of colloidal nanocrystals are discussed in detail. The radiative recombination of a dark exciton becomes possible as a result of simultaneous flips of the surface spin and electron spin in a dark exciton that leads to admixture of bright exciton states. This recombination mechanism is effective in the case of a disordered state of the spin system and is suppressed if the polaron ferromagnetic state forms. The conditions and various mechanisms of formation of the spin polaron state and possibilities of its experimental detection are discussed. The experimental and theoretical studies of magnetic field-induced circular polarization of PL in ensembles of colloidal nanocrystals are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. F. Gross and A. A. Kaplyanskii, Opt. Spektrosk. 11, 204 (1957).

    Google Scholar 

  2. A. I. Ekimov, A. A. Onushchenko, and V. A. Tsekhomskii, Fiz. Khim. Stekla 6, 511 (1980).

    Google Scholar 

  3. A. I. Ekimov and A. A. Onushchenko, JETP Lett. 34, 345 (1981).

    ADS  Google Scholar 

  4. A. I. Ekimov and A. A. Onushchenko, JETP Lett. 40, 1136 (1984).

    ADS  Google Scholar 

  5. R. Rossetti, S. Nakahara, and L. E. Brus, J. Chem. Phys. 79, 1086 (1983).

    Article  ADS  Google Scholar 

  6. L. E. Brus, J. Chem. Phys. 80, 4403 (1984).

    Article  ADS  Google Scholar 

  7. M. V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D. V. Talapin, C. R. Kagan, V. I. Klimov, A. L. Rogach, P. Reiss, D. J. Milliron, P. Guyot-Sionnnest, G. Konstantatos, W. Parak, T. Hyeon, B. A. Korgel, C. B. Christopher, and W. Heiss, ACS Nano 9, 1012 (2015).

    Article  Google Scholar 

  8. A. C. Berends and C. de Mello Donega, J. Phys. Chem. Lett. 8, 4077 (2017).

    Article  Google Scholar 

  9. D. V. Talapin, J. S. Lee, M. V. Kovalenko, and E. V. Shevchenko, Chem. Rev. 110, 389 (2010).

    Article  Google Scholar 

  10. O. Chen, J. Zhao, V. P. Chauhan, J. Cui, C. Wong, D. K. Harris, H. Wei, H. S. Han, D. Fukumura, R. K. Jain, and M. G. Bawendi, Nat. Mater. 12, 445 (2013).

    Article  ADS  Google Scholar 

  11. J. Bao and M. G. Bawemdi, Nature (London, U.K.) 523, 67 (2015).

    Article  ADS  Google Scholar 

  12. J. Owen and L. Brus, J. Am. Chem. Soc. 139, 10393 (2017).

    Article  Google Scholar 

  13. J. Owen, Science (Washington, DC, U. S.) 347, 615 (2015).

    Article  ADS  Google Scholar 

  14. M. A. Boles, D. Ling, T. Hyeon, and D. V. Talapin, Nat. Mater. 15, 141 (2016).

    Article  ADS  Google Scholar 

  15. M. S. Seehra, P. Dutta, S. Neeleshwar, Y. Y. Chen, C. L. Chen, S. W. Chou, C. C. Chen, C. L. Dong, and C. L. Chang, Adv. Mater. 20, 1656 (2008).

    Article  Google Scholar 

  16. R. W. Meulenberg, J. R. I. Lee, S. K. McCall, K. M. Hanif, D. Haskel, J. C. Lang, L. J. Terminello, and T. van Buuren, J. Am. Chem. Soc. 131, 6888 (2009).

    Article  Google Scholar 

  17. L. Piveteau, T. C. Ong, A. J. Rossini, L. Emsley, C. Copéret, and M. V. Kovalenko, J. Am. Chem. Soc. 137, 13964 (2015).

    Article  Google Scholar 

  18. A. J. Rossini, A. Zagdoun, M. Lelli, A. Lesage, C. Copéret, and L. Emsley, Accounts Chem. Res. 46, 1942 (2013).

    Article  Google Scholar 

  19. Al. L. Efros and A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).

    Google Scholar 

  20. A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, I. A. Kudryavtsev, T. V. Yazeva, A. V. Rodina, and Al. L. Efros, J. Opt. Soc. Am. B 10, 100 (1993).

    Article  ADS  Google Scholar 

  21. L. Keldysh, Phys. Status Solidi A 164, 3 (1993).

    Article  ADS  Google Scholar 

  22. Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).

    Article  ADS  Google Scholar 

  23. S. V. Gupalov and E. L. Ivchenko, Phys. Solid State 42, 2030 (2000).

    Article  ADS  Google Scholar 

  24. M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, Phys. Rev. Lett. 65, 1623 (1990).

    Article  ADS  Google Scholar 

  25. M. Nirmal, C. Murray, and M. Bawendi, Phys. Rev. B 50, 2293 (1994).

    Article  ADS  Google Scholar 

  26. M. Nirmal, D. Norris, M. Kuno, M. Bawendi, Al. L. Efros, and M. Rosen, Phys. Rev. Lett. 75, 3728 (1995).

    Article  ADS  Google Scholar 

  27. M. Chamarro, C. Gourdon, P. Lavallard, O. Lublinskaya, and A. I. Ekimov, Phys. Rev. B 53, 1336 (1996).

    Article  ADS  Google Scholar 

  28. Al. L. Efros, in Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties, Ed. by V. I. Klimov (Marcel Dekker, New York, 2003), p.103.

  29. M. Califano, A. Franceschetti, and A. Zunger, Phys. Rev. B 75, 115401 (2007).

    Article  ADS  Google Scholar 

  30. M. Korkusinski, O. Voznyy, and P. Hawrylak, Phys. Rev. B 82, 245304 (2010).

    Article  ADS  Google Scholar 

  31. A. Shabaev and Al. L. Efros, Nano Lett. 4, 1821 (2004).

    Article  ADS  Google Scholar 

  32. L. Biadala, F. Liu, M. D. Tessier, D. R. Yakovlev, B. Dubertret, and M. Bayer, Nano Lett. 14, 1134 (2014).

    Article  ADS  Google Scholar 

  33. L. Biadala, B. Siebers, Y. Beyazit, M. D. Tessier, D. Dupont, Z. Hens, D. R. Yakovlev, and M. Bayer, ACS Nano 10, 3356 (2016).

    Article  Google Scholar 

  34. A. Rodina and Al. L. Efros, Nano Lett. 15, 4214 (2015).

    Article  ADS  Google Scholar 

  35. A. Rodina and Al. L. Efros, Phys. Rev. B 93, 155427 (2016).

    Article  ADS  Google Scholar 

  36. V. I. Perel and B. P. Zakharchenya, in Optical Orientation, Ed. by B. Meier and B. P. Zakharchenia (North-Holland, Amsterdam, 1984), Chap.1.

  37. E. L. Ivchenko, Phys. Solid State 60 (2018).

  38. S. Yu. Verbin, S. A. Permogorov, and A. N. Reznitskii, Sov. Phys. Solid State 25, 195 (1983).

    Google Scholar 

  39. S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Phys. Rev. B 35, 8113 (1987).

    Article  ADS  Google Scholar 

  40. E. Yablonovitch, T. J. Gmitter, and R. Bhat, Phys. Rev. Lett. 61, 2546 (1988).

    Article  ADS  Google Scholar 

  41. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  42. M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus, J. Chem. Phys. 96, 946 (1992).

    Article  ADS  Google Scholar 

  43. B. Siebers, L. Biadala, D. R. Yakovlev, A. V. Rodina, T. Aubert, Z. Hens, and M. Bayer, Phys. Rev. B 91, 155304 (2015).

    Article  ADS  Google Scholar 

  44. A. Rodina and Al. L. Efros, J. Exp. Theor. Phys. 95, 554 (2016).

    Article  ADS  Google Scholar 

  45. E. Johnston-Halperin, D. Awschalom, S. Crooker, A. L. Efros, M. Rosen, X. Peng, and A. Alivisatos, Phys. Rev. B 63, 205309 (2001).

    Article  ADS  Google Scholar 

  46. S. A. Crooker, T. Barrick, J. A. Hollingsworth, and V. I. Klimov, Appl. Phys. Lett. 82, 2793 (2003).

    Article  ADS  Google Scholar 

  47. O. Labeau, P. Tamarat, and B. Lounis, Phys. Rev. Lett. 90, 257404 (2003).

    Article  ADS  Google Scholar 

  48. M. Furis, J. A. Hollingsworth, V. I. Klimov, and S. A. Crooker, J. Phys. Chem. B 109, 15332 (2005).

    Article  Google Scholar 

  49. C. de Mello Donegá, M. Bode, and A. Meijerink, Phys. Rev. B 74, 085320 (2006).

    Article  ADS  Google Scholar 

  50. D. Oron, A. Aharoni, C. de Mello Donega, J. Van Rijssel, A. Meijerink, and U. Banin, Phys. Rev. Lett. 102, 177402 (2009).

    Article  ADS  Google Scholar 

  51. L. Biadala, Y. Louyer, P. Tamarat, and B. Lounis, Phys. Rev. Lett. 103, 037404 (2009).

    Article  ADS  Google Scholar 

  52. L. Biadala, Y. Louyer, P. Tamarat, and B. Lounis, Phys. Rev. Lett. 105, 157402 (2010).

    Article  ADS  Google Scholar 

  53. I. Moreels, G. Rainò, R. Gomes, Z. Hens, T. Stöferle, and R. F. Mahrt, ACS Nano 5, 8033 (2011).

    Article  Google Scholar 

  54. J. H. Blokland, V. I. Claessen, F. J. P. Wijnen, E. Groeneveld, C. de Mello Donegá, D. Vanmaekelbergh, A. Meijerink, J. C. Maan, and P. C. M. Christianen, Phys. Rev. B 83, 035304 (2011).

    Article  ADS  Google Scholar 

  55. F. Liu, L. Biadala, A. V. Rodina, D. R. Yakovlev, D. Dunker, C. Javaux, J. P. Hermier, A. L. Efros, B. Dubertret, and M. Bayer, Phys. Rev. B 88, 035302 (2013).

    Article  ADS  Google Scholar 

  56. F. Liu, A. V. Rodina, D. R. Yakovlev, A. Greilich, A. A. Golovatenko, A. S. Susha, A. L. Rogach, Y. G. Kusrayev, and M. Bayer, Phys. Rev. B 89, 115306 (2014).

    Article  ADS  Google Scholar 

  57. L. Biadala, B. Siebers, R. Gomes, Z. Hens, D. R. Yakovlev, and M. Bayer, J. Phys. Chem. C 118, 22309 (2014).

    Article  Google Scholar 

  58. L. Biadala, E. Shornikova, A. Rodina, D. Yakovlev, B. Siebers, N. Aubert, M. Nasilowski, Z. Hens, B. Dubertret, A. Efros, and M. Bayer, Nat. Nanotechnol. 12, 569 (2017).

    Article  ADS  Google Scholar 

  59. E. V. Shornikova, L. Biadala, D. R. Yakovlev, V. F. Sapega, K. Y. G. A. A. Mitioglu, M. V. Ballottin, P. C. M. Christianen, V. V. Belykh, M. V. Kochiev, N. N. Sibeldin, A. A. Golovatenko, A. V. Rodina, N. A. Gippius, A. Kuntzmann, J. Ye, M. Nasilowski, B. Dubertret, and M. Bayer, Nanoscale 10, 646 (2018).

    Article  Google Scholar 

  60. G. Pettinari, E. Groeneveld, C. de Mello Donegá, D. Vanmaekelbergh, J. C. Maan, and P. C. M. Christianen, J. Phys. Chem. C 121, 23693 (2017).

    Article  Google Scholar 

  61. C. Javaux, B. Mahler, B. Dubertret, A. Shabaev, A. V. Rodina, A. L. Efros, D. R. Yakovlev, F. Liu, M. Bayer, G. Camps, L. Biadala, S. Buil, X. Quelin, and J. P. Hermier, Nat. Nanotechnol. 8, 206 (2013).

    Article  ADS  Google Scholar 

  62. E. V. Shornikova, L. Biadala, D. R. Yakovlev, D. H. Feng, V. F. Sapega, N. Flipo, A. A. Golovatenko, M. A. Semina, A. V. Rodina, A. A. Mitioglu, M. V. Ballotin, P. C. M. Christianen, Y. G. Kusraev, M. Nasilowski, B. Dubertret, and M. Bayer, Nano Lett. 18, 373 (2018).

    Article  ADS  Google Scholar 

  63. A. Shabaev, A. V. Rodina, and Al. L. Efros, Phys. Rev. B 86, 205311 (2012).

    Article  ADS  Google Scholar 

  64. U. Woggon, F. Gindele, O. Wind, and C. Klingshirn, Phys. Rev. B 54, 1506 (1996).

    Article  ADS  Google Scholar 

  65. D. Norris, Al. L. Efros, M. Rosen, and M. Bawendi, Phys. Rev. B 53, 16347 (1996).

    Article  ADS  Google Scholar 

  66. F. Wijnen, J. Blokland, P. Chin, P. Christianen, and J. Maan, Phys. Rev. B 78, 235318 (2008).

    Article  ADS  Google Scholar 

  67. A. Granados del Águila, B. Jha, F. Pietra, E. Groeneveld, C. de Mello Donegá, J. C. Maan, D. Vanmaekelbergh, and P. C. M. Christianen, ACS Nano 8, 5921 (2014).

    Article  Google Scholar 

  68. N. le Thomas, E. Herz, O. Schöps, U. Woggon, and M. Artemyev, Phys. Rev. Lett. 94, 016803 (2005).

    Article  ADS  Google Scholar 

  69. Y. Louyer, L. Biadala, J. B. Trebbia, M. J. Fernée, P. Tamarat, and B. Lounis, Nano Lett. 11, 4370 (2011).

    Article  ADS  Google Scholar 

  70. Y. Louyer, L. Biadala, P. Tamarat, and B. Lounis, Appl. Phys. Lett. 96, 203111 (2010).

    Article  ADS  Google Scholar 

  71. M. J. Fernée, P. Tamarat, and B. Lounis, J. Phys. Chem. Lett. 4, 609 (2013).

    Article  Google Scholar 

  72. M. Califano, A. Franceschetti, and A. Zunger, Nano Lett. 5, 2360 (2005).

    Article  ADS  Google Scholar 

  73. K. Leung, S. Pokrant, and K. B. Whaley, Phys. Rev. B 57, 12291 (1998).

    Article  ADS  Google Scholar 

  74. S. Goupalov, Phys. Rev. B 74, 113305 (2006).

    Article  ADS  Google Scholar 

  75. P. C. Sercel, A. Shabaev, and Al. L. Efros, Nano Lett. 17, 4820 (2017).

    Article  ADS  Google Scholar 

  76. G. Mackh, W. Ossau, D. R. Yakovlev, A. Waag, G. Landwehr, R. Hellmann, and E. O. Göbel, Phys. Rev. B 49, 10248 (1994).

    Article  ADS  Google Scholar 

  77. D. R. Yakovlev and W. Ossau, in Introduction to the Physics of Diluted Magnetic Semiconductors, Ed. by J. Kossut and J. A. Gaj (Springer, Berlin, 2010), Chap.7.

  78. S. J. Cheng and P. Hawrylak, Eur. Phys. Lett. 81, 37005 (2008).

    Article  ADS  Google Scholar 

  79. F. Qu and P. Hawrylak, Phys. Rev. Lett. 96, 157201 (2006).

    Article  ADS  Google Scholar 

  80. R. M. Abolfath, P. Hawrylak, and I. Žutic, Phys. Rev. Lett. 98, 207203 (2007).

    Article  ADS  Google Scholar 

  81. D. A. Bussian, S. A. Crooker, M. Yin, M. Brynda, Al. L. Efros, and V. I. Klimov, Nat. Mater. 8, 35 (2009).

    Article  ADS  Google Scholar 

  82. R. Viswanatha, J. M. Pietryga, V. I. Klimov, and S. A. Crooker, Phys. Rev. Lett. 107, 067402 (2011).

    Article  ADS  Google Scholar 

  83. I. A. Merkulov and A. V. Rodina, in Introduction to the Physics of Diluted Magnetic Semiconductors, Ed. by J. Kossut and J. A. Gaj (Springer, Berlin, 2010), Chap. 3, p.65.

  84. R. Beaulac, L. Schneider, P. I. Archer, G. Bacher, and D. R. Gamelin, Science (Washington, DC, U. S.) 325, 973 (2009).

    Article  ADS  Google Scholar 

  85. H. D. Nelson, L. R. Bradshaw, C. J. Barrows, V. A. Vlaskin, and D. R. Gamelin, ACS Nano 9, 11177 (2015).

    Article  Google Scholar 

  86. W. D. Rice, W. Liu, T. A. Baker, N. A. Sinitsyn, V. I. Klimov, and S. A. Crooker, Nat. Nanotechnol. 11, 137 (2016).

    Article  ADS  Google Scholar 

  87. W. D. Rice, W. Liu, V. Pinchetti, D. R. Yakovlev, V. I. Klimov, and S. A. Crooker, Nano Lett. 17, 3068 (2017).

    Article  ADS  Google Scholar 

  88. F. Muckel, C. J. Barrows, A. Graf, A. Schmitz, C. S. Erickson, D. R. Gamelin, and G. Bacher, Nano Lett. 17, 4768 (2017).

    Article  ADS  Google Scholar 

  89. G. L. Bir and G. E. Pikus, Symmetry and Stain-Induced Effects in Semiconductors (Nauka, Moscow, 1972; Wiley, New York, 1975).

    Google Scholar 

  90. E. I. Ivchenko and G. E. Pikus, Superlattices and other Heterostucture (Springer, Berlin, 1997).

    Book  MATH  Google Scholar 

  91. Al. L. Efros, Phys. Rev. B 46, 7448 (1993).

    Article  ADS  Google Scholar 

  92. Al. L. Efros and A. V. Rodina, Phys. Rev. B 47, 10005 (1993).

    Article  ADS  Google Scholar 

  93. M. A. Semina, A. A. Golovatenko, and A. V. Rodina, Phys. Rev. B 93, 045409 (2016).

    Article  ADS  Google Scholar 

  94. V. P. Kochereshko, G. V. Mikhailov, and I. N. Uraltsev, Sov. Phys. Solid State 25, 439 (1983).

    Google Scholar 

  95. E. I. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science Int., Harrow, UK, 2005).

    Google Scholar 

  96. A. I. Anselm, Introduction to Semiconductor Theory (Prentice-Hall, Englewood Cliffs, 1981; Nauka, Moscow, 1978).

    Google Scholar 

  97. C. Lethiec, J. Laverdant, H. Vallon, C. Javaux, B. Dubertret, J. M. Frigerio, C. Schwob, L. Coolen, and A. Maître, Phys. Rev. X 4, 021037 (2014).

    Google Scholar 

  98. S. A. Empedocles, R. Neuhauser, K. Shimizu, and M. G. Bawendi, Adv. Mater. 11, 1243 (1999).

    Article  Google Scholar 

  99. I. Chung, K. T. Shimizu, and M. G. Bawendi, Proc. Natl. Acad. Sci. U.S.A. 100, 405 (2003).

    Article  ADS  Google Scholar 

  100. B. B. Batygin and I. N. Toptygin, Collection of Problems in Electrodynamics (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  101. Al. L. Efros, A. I. Ekimov, F. Kozlowski, V. Petrova-Koch, H. Schmidbaur, and S. Shumilov, Solid State Commun. 78, 853 (1991).

    Article  ADS  Google Scholar 

  102. S. V. Gupalov and I. A. Merkulov, Phys. Solid State 41, 1349 (1999).

    Article  ADS  Google Scholar 

  103. A. Rodina, A. Golovatenko, E. Shornikova, D. Yakovlev, and Al. L. Efros, Semiconductors 52, 572 (2018).

    Article  ADS  Google Scholar 

  104. P. G. de Gennes, Phys. Rev. 118, 141 (1960).

    Article  ADS  Google Scholar 

  105. E. L. Nagaev, JETP Lett. 6, 18 (1967).

    ADS  Google Scholar 

  106. I. A. Merkulov, D. R. Yakovlev, A. Keller, W. Ossau, J. Geurts, A. Waag, G. Landwehr, G. Karczewski, T. Wojtowicz, and J. Kossut, Phys. Rev. Lett. 83, 1431 (1999).

    Article  ADS  Google Scholar 

  107. M. I. D’yakonov and V. I. Perel’, JETP Lett. 16, 398 (1972).

    ADS  Google Scholar 

  108. V. L. Korenev, JETP Lett. 70, 129 (1999).

    Article  ADS  Google Scholar 

  109. M. Nirmal, Photophysics of CdSe Semiconductor Nanocrystals (MIT, Boston, 1996).

    Google Scholar 

  110. J. R. Murphy, S. Delikanli, T. Zhang, T. A. Scrace, P. Zhang, T. Norden, T. Thomay, A. N. Cartwright, H. V. Demir, and A. Petrou, Proc. SPIE 10114, 101140R (2017).

    Article  Google Scholar 

  111. I. Broser, R. Broser, and A. Hoffmann, in Landoldt-Börnstein Tables, New Series, Group III: Crystals and Solid State Physics, Ed. by O. Madelung (Springer, Berlin, 1982).

  112. J. A. Gupta, D. D. Awschalom, Al. L. Efros, and A. V. Rodina, Phys. Rev. B 66, 125307 (2002).

    Article  ADS  Google Scholar 

  113. A. V. Rodina, Al. L. Efros, and A. Y. Alekseev, Phys. Rev. B 67, 155312 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rodina.

Additional information

Original Russian Text © A.V. Rodina, A.A. Golovatenko, E.V. Shornikova, D.R. Yakovlev, 2018, published in Fizika Tverdogo Tela, 2018, Vol. 60, No. 8, pp. 1525–1541.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodina, A.V., Golovatenko, A.A., Shornikova, E.V. et al. Spin Physics of Excitons in Colloidal Nanocrystals. Phys. Solid State 60, 1537–1553 (2018). https://doi.org/10.1134/S106378341808019X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341808019X

Navigation