Skip to main content
Log in

Ab initio calculations of the geometry and electronic structure of point defects in ferroelectrics with a perovskite structure

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Ab initio calculations of the optimized geometry and the electronic structure of lattice defects in incipient perovskite ferroelectrics SrTiO3 and KTaO3 are performed in the framework of the density functional theory. The results are presented for the Li+ impurity ion at the A site in the KTaO3 and SrTiO3 ferroelectrics; the Mn2+, Cd2+, Ca2+, Mg2+, and Zn2+ ions at the A site and the Mn4+ and Mg2+ ions at the B site in the SrTiO3 compound; and the MN 2+Ti -V O and Mg 2+Ti -V O complexes in the SrTiO3 ferroelectric. The results are obtained by the cluster method with allowance made for the structural relaxation initiated by the defect and, for nonisovalent substitutional impurities, with due regard for the charge and spin states of the defect. It is established that the Ca 2+Sr , Cd 2+Sr , Mn 4+Ti , and Mg 2+Ti ions have a stable central position, whereas the Li +K ion in the KTaO3 compound and the Li +Sr , Mn 2+Sr , and Zn 2+Sr defects in the SrTiO3 ferroelectric are off-center ions. The shape of the multiminimum adiabatic potential and the parameters of dielectric relaxators (activation barrier, dipole moment) for polar defects are obtained. The electronic impurity levels are determined for the Li +Sr and Mg 2+Ti neutral defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Lemanov, in Defects and Surface-Induced Effects in Advanced Perovskites, Ed. by G. Borstel, A. Krumins, and D. Millers (Kluwer, Dordrecht, The Netherlands, 2000), p. 329.

    Google Scholar 

  2. O. E. Kvyatkovskiĭ, Fiz. Tverd. Tela (St. Petersburg) 43(8), 1345 (2001) [Phys. Solid State 43 (8), 1401 (2001)].

    Google Scholar 

  3. D. Ricci, G. Bano, G. Pacchioni, and F. Illas, Phys. Rev. B: Condens. Matter 68, 224105 (2003).

    Google Scholar 

  4. J. P. Buban, H. Iddir, and S. Öǧüt, Phys. Rev. B: Condens. Matter 69, 180102 (2004).

    Google Scholar 

  5. W. Luo, W. Duan, S. G. Louie, and M. L. Cohen, Phys. Rev. B: Condens. Matter 70, 214109 (2004).

    Google Scholar 

  6. J. Carrasco, F. Illas, N. Lopez, E. A. Kotomin, Yu. F. Zhukovskii, R. A. Evarestov, Yu. A. Mastrikov, S. Piskunov, and J. Maier, Phys. Rev. B: Condens. Matter 73, 064106 (2006).

    Google Scholar 

  7. I. I. Tupitsyn, A. Deineka, V. A. Trepakov, L. Jastrabik, and S. E. Kapphan, Phys. Rev. B: Condens. Matter 64, 195111 (2001).

    Google Scholar 

  8. S. A. Prosandeev, E. Cockayne, and B. P. Burtan, Phys. Rev. B: Condens. Matter 68, 014120 (2003).

    Google Scholar 

  9. O. E. Kvyatkovskiĭ, Fiz. Tverd. Tela (St. Petersburg) 44(6), 1087 (2002) [Phys. Solid State 44 (6), 1135 (2002)].

    Google Scholar 

  10. O. E. Kvyatkovskii, Ferroelectronics 314, 143 (2005).

    Article  Google Scholar 

  11. K. Leung, Phys. Rev. B: Condens. Matter 63, 134415 (2001).

    Google Scholar 

  12. K. Leung, Phys. Rev. B: Condens. Matter 65, 012102 (2002).

    Google Scholar 

  13. R. A. Evarestov, S. Piskunov, E. A. Kotomin, and G. Borstel, Phys. Rev. B: Condens. Matter 67, 064101 (2003).

    Google Scholar 

  14. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  15. A. D. Becke, Phys. Rev. B: Condens. Matter 68, 3098 (1988).

    Google Scholar 

  16. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter 37, 785 (1988).

    ADS  Google Scholar 

  17. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Computer Code GAUSSIAN 03: Revision B.05 (Gaussian, Pittsburgh, PA, United States, 2003).

    Google Scholar 

  18. T. H. Dunning, J. Chem. Phys. 55, 716 (1971).

    Article  ADS  Google Scholar 

  19. T. H. Dunning and P. J. Hay, in Methods of Electronic Structure Theory, Ed. by H. F. Schaefer III (Plenum, New York, 1977), Vol. 3.

    Google Scholar 

  20. T. H. Dunning, J. Chem. Phys. 53, 2823 (1970).

    Article  ADS  Google Scholar 

  21. I. Hyla-Kryspin, J. Demuynck, A. Strich, and M. Benard, J. Chem. Phys. 75, 3954 (1981).

    Article  ADS  Google Scholar 

  22. P. O. Widmark, P. A. Malmqvist, and B. Roos, Theor. Chim. Acta 77, 291 (1990); P. O. Widmark, B. J. Person, and B. Roos, Theor. Chim. Acta 79, 419 (1991); R. Pou-Amerigo, M. Merchan, I. Nebot-Gil, P. O. Widmark, and B. Roos, Theor. Chim. Acta 92, 149 (1995).

    Article  Google Scholar 

  23. N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, Can. J. Chem. 70, 560 (1992).

    Article  Google Scholar 

  24. A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970); A. J. H. Wachters, IBM Tech. Rep., No. RJ584 (1969).

    Article  ADS  Google Scholar 

  25. C. W. Bauschlicher, Jr., S. R. Langhoff, and L. A. Barnes, J. Chem. Phys. 91, 2399 (1989).

    Article  ADS  Google Scholar 

  26. W. J. Stevens, H. Basch, and M. Krauss, J. Chem. Phys. 81, 6026 (1984); W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, Can. J. Chem. Phys. 70, 612 (1992).

    Article  ADS  Google Scholar 

  27. J. J. van der Klink, and F. Borsa, Phys. Rev. B: Condens. Matter 30, 52 (1984).

    ADS  Google Scholar 

  28. U. T. Hochli, K. Knorr, and A. Loidl, Adv. Phys. 39, 405 (1990).

    Article  ADS  Google Scholar 

  29. E. K. Pattnaik, J. Toulouse, and B. George, Phys. Rev. B: Condens. Matter 62, 12820 (2000).

    Google Scholar 

  30. K. van Benthem and C. Elsasser, J. Appl. Phys. 90, 6156 (2001).

    Article  ADS  Google Scholar 

  31. R. Wang, Y. Inaguma, and M. Itoh, Physica B (Amsterdam) 284–288, 1141 (2000).

    Google Scholar 

  32. V. V. Lemanov, A. V. Sotnikov, E. P. Smirnova, and M. Weihnacht, Fiz. Tverd. Tela (St. Petersburg) 44(11), 1948 (2002) [Phys. Solid State 44 (11), 2039 (2002)].

    Google Scholar 

  33. A. Tkach, P. M. Vilarinho, and A. Kholkin, Appl. Phys. A 79, 2013 (2004).

    Article  ADS  Google Scholar 

  34. V. V. Lemanov, E. P. Smirnova, A. V. Sotnikov, and M. Weihnacht, Fiz. Tverd. Tela (St. Petersburg) 46(8), 1402 (2004) [Phys. Solid State 46 (8), 1442 (2004)].

    Google Scholar 

  35. A. Tkach, P. M. Vilarinho, and A. Kholkin, Phys. Rev. B: Condens. Matter 73, 104113 (2006).

    Google Scholar 

  36. A. Tkach, P. M. Vilarinho, and A. Kholkin, Acta Mater. 54, 5385 (2006).

    Article  Google Scholar 

  37. V. A. Trepakov, M. Savinov, V. Železný, J. Pokorný, P. Surnikov, C. B. Azzoni, P. Galilnetto, M. C. Mozzati, A. Badalyan, A. Deyneka, and L. Jastrabik, J. Phys.: Conf. Ser. 93, 012017 (2007).

    Google Scholar 

  38. M. Savinov, V. A. Trepakov, P. P. Surnikov, V. Železný, J. Pokorný, A. Deyneka, L. Jastrabik, and P. Galinetto, J. Phys.: Condens. Matter 20, 095221 (2008).

    Google Scholar 

  39. M. E. Guzhva, V. V. Lemanov, and P. A. Markovin, Fiz. Tverd. Tela (St. Petersburg) 43(11), 2058 (2001) [Phys. Solid State 43 (11), 2146 (2001)].

    Google Scholar 

  40. K. A. Müller, Phys. Rev. Lett. 2, 341 (1959).

    Article  ADS  Google Scholar 

  41. R. A. Serway, W. Berlinger, K. A. Müller, and R. W. Collins, Phys. Rev. B: Solid State 16, 4761 (1977).

    ADS  Google Scholar 

  42. K. W. Blazey, J. M. Cabrera, and K. A. Müller, Solid State Commun. 45, 903 (1983).

    Article  ADS  Google Scholar 

  43. V. V. Laguta, I. V. Kondakova, I. P. Bykov, M. D. Glinshuk, A. Tkach, P. M. Vilarinho, and L. Jastrabik, Phys. Rev. B: Condens. Matter 76, 054104 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Kvyatkovskiĭ.

Additional information

Original Russian Text © O.E. Kvyatkovskiĭ, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 5, pp. 932–939.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kvyatkovskiĭ, O.E. Ab initio calculations of the geometry and electronic structure of point defects in ferroelectrics with a perovskite structure. Phys. Solid State 51, 982–990 (2009). https://doi.org/10.1134/S1063783409050163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409050163

PACS numbers

Navigation