Skip to main content
Log in

Investigation of Structure, First Order Optical Susceptibility, Non-Linear Optical, Electrical Susceptibility Results, and IV Characterizations of Graphene Multilayer

  • SURFACES, INTERFACES, AND THIN FILMS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Graphene sample was synthesized using pulsed laser deposition technique. The structure for graphene sample was investigated using both of transmission electron microscopy, for powder graphene, diffraction electron microscopy, and X-ray diffraction technique for thin film. The first order of moment M–1 and the third order of moment M–3 were determined optically. The linear optical susceptibility χ(1) for this sample was determined. Non-linear optical parameters such as third-order non-linear optical susceptibility χ(3), non-linear absorption coefficient βc, and non-linear refractive index n2 were determined for this sample. The electrical susceptibility χe and relative permittivity εr were calculated. The electronic results such as density of valence band, density of conduction band, and Fermi level position were determined. IV Characterizations for this sample were studied in case of forward and reverse current and in case of darkness and illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  2. N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. V. Wees, Nature (London, U.K.) 448 (7153), 571 (2007).

    Article  ADS  Google Scholar 

  3. J. M. Carlsson, Nat. Mater. 6, 801 (2007).

    Article  ADS  Google Scholar 

  4. T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera-Alonso, R. D. Pinar, D. H. Adamson, H. C. Schnipp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prudhomme, and L. C. Brinson, Nat. Nanotechnol. 3, 327 (2008).

    Article  ADS  Google Scholar 

  5. M. Liang and L. Zhi, J. Mater. Chem. 19, 5871 (2009).

    Article  Google Scholar 

  6. S. R. C. Vivekchand, C. S. Rout, K. S. Subrahmanyam, A. Govindaraj, and C. N. R. Rao, J. Chem. Sci. 120, 9 (2008).

    Article  Google Scholar 

  7. J. Zhu, Nat. Nanotechnol. 3, 528 (2008).

    Article  ADS  Google Scholar 

  8. S. Patchkovskii, J. S. Tse, S. N. Yurchenko, L. Zhechkov, T. Heine, and G. Seifert, Proc. Natl. Acad. Sci. U. S. A. 102, 10439 (2005).

    Article  ADS  Google Scholar 

  9. N. A. Kotov, Nature (London, U.K.) 442, 254 (2006).

    Article  ADS  Google Scholar 

  10. G. Eda and M. Chhowalla, Nano Lett. 9, 814 (2009).

    Article  ADS  Google Scholar 

  11. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, and I. V. Grigorieva, Nature (London, U.K.) 438, 197 (2005).

    Article  ADS  Google Scholar 

  12. Y. B. Zhang, Y. Tan, H. L. Stormer, and P. Kim, Nature (London, U.K.) 438, 201 (2005).

    Article  ADS  Google Scholar 

  13. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature (London, U.K.) 446, 60 (2007).

    Article  ADS  Google Scholar 

  14. M. I. Katsnelson and K. S. Novoselov, Solid State Commun. 143, 3 (2007).

    Article  ADS  Google Scholar 

  15. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, and M. I. Katsnelson, Nat. Mater. 6, 652 (2007).

    Article  ADS  Google Scholar 

  16. A. N. Obraztsov, Nat. Nanotechnol. 4, 212 (2009).

    Article  ADS  Google Scholar 

  17. J. C. Meyer, C. O. Girit, M. F. Crommie, and A. Zettl, Nature (London, U.K.) 454, 319 (2008).

    Article  ADS  Google Scholar 

  18. V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, Nat. Nanotechnol. 4, 25 (2009).

    Article  ADS  Google Scholar 

  19. S. Park and R. Ruoff, Nat. Nanotechnol. 4, 217 (2009).

    Article  ADS  Google Scholar 

  20. M. J. McAllister, J. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prudhomme, and I. A. Aksay, Chem. Mater. 19, 4396 (2007).

    Article  Google Scholar 

  21. T. M. Radadiya, Eur. J. Mater. Sci. 2, 6 (2015).

    Google Scholar 

  22. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U. S.) 306, 666 (2004).

    Article  ADS  Google Scholar 

  23. K. I. Bolotin, K. J. Sikes, Z. Jiang, G. Funderberg, J. Hones, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).

    Article  ADS  Google Scholar 

  24. R. Sanjinés, M. D. Abad, C. Vaju, R. Smajda, and M. M. Magrez, Surf. Coat. Technol. 206, 727 (2011).

    Article  Google Scholar 

  25. J. Algdal, T. Balasubramanian, M. Breitholtz, T. Kihlgren, and L. Wallden, Surf. Sci. 601, 1167 (2007).

    Article  ADS  Google Scholar 

  26. R. Sengupt, M. Bhattachary, S. Bandyopadhyay, and A. K. Bhowmick, Prog. Polym. Sci. 36, 638 (2011).

    Article  Google Scholar 

  27. J. Bai and Y. Huang, Mater. Sci. Eng. R 70, 341 (2010).

    Article  Google Scholar 

  28. S. Biswas, H. Fukushima, and L. T. Drzal, Appl. Sci. Manuf. 42, 371 (2011).

    Article  Google Scholar 

  29. J. Zhang, Y. Yu, and D. Huang, Solid State Sci. 12, 1183 (2010).

    Article  ADS  Google Scholar 

  30. G. Venugopal, K. Krishnamoorthy, R. Mohan, and S. J. Kim, Mater. Chem. Phys. 132, 29 (2012).

    Article  Google Scholar 

  31. Y. L. Li, C. F. Kuan, C. H. Chen, H. C. Kuan, M. C. Yip, S. L. Chiu, and C. L. Chiang, Mater. Chem. Phys. 134, 677 (2012).

    Article  Google Scholar 

  32. M. R. Mahmoudian, Y. Alias, and W. J. Basirun, Electrochim. Acta 72, 53 (2012).

    Article  Google Scholar 

  33. M. Shahrokhi, S. Naderi, and A. Fathalian, Solid State Commun. 152, 1012 (2012).

    Article  ADS  Google Scholar 

  34. R. Kumar, R. K. Singh, J. Singh, R. S. Tiwari, and O. N. Srivastava, J. Alloys Compd. 526, 129 (2012).

    Article  Google Scholar 

  35. S. Lou, Y. Wang, S. Zhou, W. Xu, G. Zhu, R. Yuan, Y. Hao, and N. Li, Mater. Lett. A 67, 169 (2012).

    Article  Google Scholar 

  36. K. Ziegler, Phys. Rev. Lett. 97, 266802 (2006).

    Article  ADS  Google Scholar 

  37. K. Ziegler, Phys. Rev. B 75, 233407 (2007).

    Article  ADS  Google Scholar 

  38. L. Liao and X. Duan, Mater. Sci. Eng. R 70, 354 (2010).

    Article  Google Scholar 

  39. S. Sonde, C. Vecchio, F. Giannazzo, R. Lo Nigro, V. Raineri, and E. Rimini, Phys. E (Amsterdam, Neth.) 44, 989 (2012).

  40. S. Ansari and E. P. Giannelis, J. Polym. Sci. B 47, 888 (2009).

    Article  Google Scholar 

  41. N. Liu, F. Luo, H. Wu, Y. Liu, and C. Zhang, Adv. Func. Mater. 18, 1518 (2008).

    Article  Google Scholar 

  42. H. A. Elmeleegi, Z. S. Elmandouh, A. Abdel Moez, and F. Taher, Int. J. Adv. Res. Phys. Sci. 2 (4), 1 (2015).

    Google Scholar 

  43. H. A. Elmeleegi, Z. S. Elmandouh, and A. Abdel Moez, Turk. J. Phys. 38, 145 (2014).

    Article  Google Scholar 

  44. A. I. Ali, J. Y. Son, A. H. Ammar, A. Abdel Moez, and Y. S. Kim, Res. Phys. 3, 167 (2013).

    Google Scholar 

  45. S. E. Fritz, T. W. Kelley, and C. D. Frisbie, J. Phys. Chem. B 109, 10574 (2005).

    Article  Google Scholar 

  46. A. A. Ziabari and F. E. Ghodsi, J. Alloys Compd. 509, 8748 (2011).

    Article  Google Scholar 

  47. B. Derkowskaa, B. Sahraouia, X. N. Phua, and W. Bala, Proc. of SPIE 4412, 337 (2001).

    Article  ADS  Google Scholar 

  48. H. Tichá and L. Tichy, J. Optoelectron. Adv. Mater. 4, 381 (2002).

    Google Scholar 

  49. P. Zhou, G. You, J. Li, S. Wang, S. Qian, and L. Chen, Opt. Express 13, 1508 (2005).

    Article  ADS  Google Scholar 

  50. K. Anshu and A. Sharma, Optik 127, 48 (2016).

    Article  ADS  Google Scholar 

  51. S. J. Mathews, C. S. Kumar, L. Giribabu, and S. V. Rao, Opt. Commun. 280, 206 (2007).

    Article  ADS  Google Scholar 

  52. CODATA Value: Electric Constant, The NIST Reference on Constants, Units, and Uncertainty (US Natl. Inst. Standards Technol., 2015). Accessed September 25, 2015.

  53. V. Gupta and A. I. Mansingh, J. Appl. Phys. 80, 1063 (1996).

    Article  ADS  Google Scholar 

  54. S. E. Braslavsky, Pure Appl. Chem. 79, 293 (2006).

    Article  Google Scholar 

  55. S. M. Sze, Physics of Semiconductor Devices (Wiley-Interscience, New York, 1969).

    Google Scholar 

  56. J. Xi, D. Wang, and Z. Shuai, WIREs Comput. Mol. Sci. 5, 215 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdel Moez.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Moez, A., Salem, M.A., Elmeleegi, H.A. et al. Investigation of Structure, First Order Optical Susceptibility, Non-Linear Optical, Electrical Susceptibility Results, and IV Characterizations of Graphene Multilayer. Semiconductors (2023). https://doi.org/10.1134/S1063782621060075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1063782621060075

Keywords:

Navigation