Skip to main content
Log in

Ultrasonic-Assisted Exfoliation of Graphitic Carbon Nitride and its Electrocatalytic Performance in Process of Ethanol Reforming

  • NANOSTRUCTURES TECHNOLOGY
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride was synthesized via thermolysis of urea and then ultrasonic exfoliated from colloidal solution to obtain phase pure ultrafine powder of g-C3N4. It was shown that ultrasonic-assisted exfoliation of the initial graphitic carbon nitride powder leads to an increase in its phase purity (PXRD), a change in the morphology (SEM), a decrease in the band gap from 2.93 eV to 2.85 eV (DRS) and an increase in the specific surface from 58.6 m2/g to 136.7 m2/g (BET). In addition, it was found that the exfoliated g-C3N4 is an effective catalyst for the process of electrocatalytic reforming – the hydrogen evolution from the water-alcohol solution. Based on volamperometry, it was found that the hydrogen overpotential of graphitic carbon nitride is equal to 249 mV (at 10 mA/cm2), and the Taffel slope is 112 mV/dec. The results of cyclic voltammetry of the electrode based on exfoliated g-C3N4 indicate its high stability, which allows us to consider the exfoliated graphitic carbon nitride as a promising basis of materials for electrocatalytic reforming of alcohols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. X. Chen, Sh. Shen, L. Guo, and S. S. Mao, Chem. Rev. 110, 6503 (2010).

    Article  Google Scholar 

  2. G. Iervolino, V. Vaiano, D. Sannino, L. Rizzo, and V. Palma, Appl. Catal. 207, 182 (2017).

    Article  Google Scholar 

  3. S. Ma, Sh. Chen, A. Soomro, Zhu Min, and W. Xiang, Int. J. Hydrogen Energy 43, 3154 (2018).

    Article  Google Scholar 

  4. K. D. Martinson, I. S. Kondrashkova, and V. I. Popkov, Russ. J. Appl. Chem. 90, 1214 (2017).

    Article  Google Scholar 

  5. A. Bachina, V. A. Ivanov, and V. I. Popkov, Nanosyst.: Phys., Chem. Math. 8, 647 (2017).

    Google Scholar 

  6. S. M. Abdel, T. A. Gadallah, M. F. El-shahat, A. M. Ashmawy, and S. I. Hanan, Biochem. Pharmacol. 4, 4165 (2016).

    Google Scholar 

  7. K. S. Kang, C. H. Kim, K. K. Bae, W. Ch. Cho, W. J. Kim, Y. H. Kim, S. H. Kim, and Ch. S. Park, Int. J. Hydrogen Energy 35 (568) (2010).

  8. V. I. Popkov, V. P. Tolstoy, and V. N. Nevedomskiy, Heliyon 5, 3 (2019).

    Article  Google Scholar 

  9. I. I. Moiseev, Russ. Chem. Rev. 82, 616 (2013).

    Article  ADS  Google Scholar 

  10. D. V. Markovskaya and E. A. Kozlova, Kinet. Catal. 59, 727 (2018).

    Article  Google Scholar 

  11. A. K. Vasilevskaia, V. I. Popkov, A. A. Valeeva, and A. A. Rempel’, Russ. J. Appl. Chem. 89, 1211 (2016).

    Article  Google Scholar 

  12. F. Dong, Z. Zhao, T. Xiong, Z. Ni, W. Zhang, Y. Sun, and W. K. Ho, ACS Appl. Mater. Interfaces 5, 11392 (2013).

    Article  Google Scholar 

  13. J. Wen, J. Xie, X. Chen, and X. Li, Appl. Surf. Sci. 391, 72 (2017).

    Article  ADS  Google Scholar 

  14. F. Dong, Zh. Wang, Y. Sun, W. K. Ho, and H. J. Zhang, Colloid Interface 401, 70 (2013).

    Article  ADS  Google Scholar 

  15. V. P. Tolstoy, L. B. Gulina, A. A. Golubeva, S. S. Ermakov, V. E. Gurenko, D. V. Navolotskaya, N. I. Vladimirova, and A. V. Koroleva, J. Solid State Electrochem. 23, 573 (2019).

    Article  Google Scholar 

  16. V. P. Tolstoy, L. I. Kuklo, and L. B. Gulina, J. Alloys Compd. 786, 198 (2019).

    Article  Google Scholar 

  17. E. S. Bakunin, E. Y. Obraztsova, and A. V. Rukhov, Inorg. Mater.: Appl. Res. 10, 249 (2019).

    Article  Google Scholar 

  18. Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, and Sh. Zh. Qiao, Nat. Commun. 5, 1 (2014).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The PXRD study was performed on the equipment of the Engineering Center of the Saint-Petersburg State Institute of Technology. The author would like to thank Tomkovich M.V. for help with scanning electron microscopy studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Chebanenko.

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chebanenko, M.I., Zakharova, N.V., Lobinsky, A.A. et al. Ultrasonic-Assisted Exfoliation of Graphitic Carbon Nitride and its Electrocatalytic Performance in Process of Ethanol Reforming. Semiconductors 53, 2072–2077 (2019). https://doi.org/10.1134/S106378261912008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378261912008X

Keywords:

Navigation