Skip to main content
Log in

Configuration analysis and optimization on multipolar Galatea trap

  • Magnetic Confinement Systems
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Multipolar Galatea magnetic trap simulation model was established with the finite element simulation software COMSOL Multiphysics. Analyses about the magnetic section configuration show that better magnetic configuration should make more plasma stay in the weak magnetic field rather than the annular magnetic shell field. Then an optimization model was established with axial electromagnetic force, weak magnetic field area and average magnetic mirror ratio as the optimization goals and with the currents of myxines as design variables. Select appropriate weight coefficients and get optimization results by applying genetic algorithm. Results show that the superiority of the target value of typical application parameters, including the average magnetic mirror can reduce more than 5%, the weak magnetic field area can increase at least 65%, at the same time, axial electromagnetic force acting on the outer myxines can be reduced to less than 50 N. Finally, the results were proved by COMSOL Multiphysics and the results proved the optimized magnetic trap configuration with more plasma in the weak magnetic field can reduce the plasma diffusion velocity and is more conducive for the constraint of plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Morozov and V. V. Savel’ev, Phys. Usp. 41, 1049 (1998).

    Article  ADS  Google Scholar 

  2. T. Ohkawa and W. D. Kerst, Nuovo. Cim. 22, 784 (1961).

    Article  Google Scholar 

  3. A. I. Morozov, V. A. Nevrovski, V. I. Pistunovich, and A. N. Svechkopal, Tech. Phys. 44, 478 (1999).

    Article  Google Scholar 

  4. A. M. Bishaev, A. A. Bush, M. B. Gavrikov, I. S. Gordeev, A. I. Denisyuk, K. E. Kamentsev, M. V. Kozintseva, V. V. Savel’ev, and A. S. Sigov, Tech. Phys. 58, 684 (2013).

    Article  Google Scholar 

  5. A. I. Morozov, A. I. Bugrova, A. M. Bishaev, M. V. Kozintseva, A. S. Lipatov, V. I. Vasilev, and V. M. Strunnikov, Phys. Rep. 32 (3), 195 (2006).

    Google Scholar 

  6. A. I. Morozov, A. I. Bugrova, A. M. Bishaev, A. S. Lipatov, and M. V. Kozintseva, Tech. Phys. 52, 1546 (2007).

    Article  Google Scholar 

  7. www.comsol.com/plasma-module.

  8. http://www.comsol.com/.

  9. L. Liyi, T. Yongbin, and P. Donghua, IEEE Trans. Magn. 50 (11), 103 (2014).

    Article  Google Scholar 

  10. K. V. Brushlinskii and N. A. Chmykhova, Math. Models Comp. Simul. 3 (1), 9 (2011).

    Article  MathSciNet  Google Scholar 

  11. A. M. Bishaev, A. I. Bugrova, M. B. Gavrikov, M. V. Kozintseva, A. S. Lipatov, V. V. Savel’ev, A. S. Sigov, P. G. Smirnov, I. A. Tarelkin, and P. P. Khramtsov, Tech. Phys. 58, 498 (2013).

    Article  Google Scholar 

  12. A. I. Morozov, A. I. Bugrova, A. M. Bishaev, and V. A. Nevrovski, Tech. Phys. Lett. 25, 700 (1999).

    Article  ADS  Google Scholar 

  13. A. I. Morozov, A. I. Bugrova, A. M. Bishaev, M. V. Kozintseva, A. S. Lipatov, Tech. Phys. Lett. 32, 65 (2006).

    Google Scholar 

  14. W. Xianwei, X. Fei, and J. Huan, J. Supercond. Nov. Magn. 27, 1015 (2014).

  15. F. Jianjian, W. Jianhua, S. Lei, and Z. Peng, Trans. China Electrotech. Soc. 24 (9), 53 (2009).

    Google Scholar 

  16. W. Jian, M. Xiao, H. Rui, and X. Dianguo, Trans. China Electrotech. Soc. 26, 159 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Tong.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, W.M., Tao, B.Q., Jin, X.J. et al. Configuration analysis and optimization on multipolar Galatea trap. Plasma Phys. Rep. 42, 919–928 (2016). https://doi.org/10.1134/S1063780X1610007X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X1610007X

Navigation