Skip to main content
Log in

Energy spectrum of longitudinal ion losses in the GDT facility under development of Alfvén ion-cyclotron instability

  • Magnetic Confinement Systems
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The influence of Alfvén ion cyclotron instability on the longitudinal losses of particles and energy from the GDT gas-dynamic trap was studied experimentally. To record the energy spectrum of ions escaping from the facility along magnetic field lines, a wide-range energy analyzer was attached to the expander. Processing of the experimental data made it possible to determine the time evolution of the ion energy distribution function and showed that the relative increase in the loss power during the development of instability did not exceed 1%. This result confirms the main conclusion of the theoretical model describing the interaction between an Alfvén wave and resonance particles and predicting that this microinstability insignificantly affects the confinement of hot ions in open magnetic traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Mirnov and D. D. Ryutov, Sov. Tech. Phys. Lett. 5, 279 (1979).

    Google Scholar 

  2. P. A. Bagryansky, A. A. Ivanov, E. P. Kruglyakov, A. M. Kudryavtsev, Yu. A. Tsidulko, A. V. Andriyash, A. L. Lukin, and Yu. N. Zouevet, Fusion Eng. Des. 70, 13 (2004).

    Article  Google Scholar 

  3. P. A. Bagryansky, Yu. V. Kovalenko, V. Ya. Savkin, A. L. Solomakhin, and D. V. Yakovlev, Nucl. Fusion 54, 082001 (2014).

    Article  ADS  Google Scholar 

  4. G. F. Abdrashitov, A. G. Abdrashitov, P. P. Deichuli, A. S. Donin, A. D. Khilchenko, A. A. Lizunov, D. V. Moiseev, S. V. Murakhtin, A. V. Sorokin, and P. V. Zubarev, Fusion Sci. Technol. 59 (1T), 280 (2011).

    Google Scholar 

  5. P. A. Bagryansky, A. V. Anikeev, A. D. Beklemishev, A. S. Donin, A. A. Ivanov, Yu. V. Kovalenko, E. P. Kruglyakov, A. A. Lizunov, A. V. Lvovskiy, V. V. Maximov, S. V. Murakhtin, E. I. Pinzhenin, V. V. Prikhodko, A. N. Pushkareva, V. Ya. Savkin, et al., Fusion Sci. Technol. 59 (1T), 31 (2011).

    Google Scholar 

  6. K. V. Zaytsev, A. V. Anikeev, P. A. Bagryansky, A. S. Donin, O. A. Korobeinikova, M. S. Korzhavina, Yu. V. Kovalenko, A. A. Lizunov, V. V. Maximov, E. I. Pinzhenin, V. V. Prikhodko, E. I. Soldatkina, A. L. Solomakhin, V. Ya. Savkin, and D. V. Yakovlev, Phys. Scr. 2014, 014004 (2014).

    Article  Google Scholar 

  7. T. A. Casper and G. R. Smith, Phys. Rev. Lett. 48, 1015 (1982).

    Article  ADS  Google Scholar 

  8. K. Ishii, T. Goto, Y. Goi, N. Kikuno, Y. Katsuki, M. Nagasaki, Y. Ono, N. Ishibashi, M. Yamanashi, M. Nakamura, I. Katanuma, A. Mase, M. Ichimura, A. Itakura, T. Tamano, et al., Phys. Rev. Lett. 83, 3438 (1999).

    Article  ADS  Google Scholar 

  9. Yu. A. Tsidulko and I. S. Chernoshtanov, Plasma Phys. Rep. 40, 955 (2014).

    Article  ADS  Google Scholar 

  10. V. V. Afrosimov, V. L. Berezovskii, I. P. Gladkovskii, A. I. Kislyakov, M. P. Petrov, and V. A. Sadovnikov, Sov. Phys. Tech. Phys. 20, 33 (1975).

    ADS  Google Scholar 

  11. D. C. Watson, Phys. Fluids 23, 2485 (1980).

    Article  ADS  Google Scholar 

  12. J. Heading, An Introduction to Phase-Integral Methods (Wiley, New York, 1962).

    MATH  Google Scholar 

  13. R. Z. Sagdeev and V. D. Shafranov, Sov. Phys. JETP 12, 130 (1960).

    Google Scholar 

  14. R. C. Davidson and J. M. Ogden, Phys. Fluids 18, 1045 (1975).

    Article  ADS  Google Scholar 

  15. A. V. Anikeev, P. A. Bagryansky, I. S. Chernoshtanov, M. S. Korzhavina, V. V. Prikhodko, and Yu. A. Tsidulko, Fusion Sci. Technol. 59 (1T), 104 (2011).

    Google Scholar 

  16. R. Katsumata, M. Ichimura, M. Inutake, H. Hojo, A. Mase, and T. Tamano, Phys. Plasmas 3, 4489 (1996).

    Article  ADS  Google Scholar 

  17. G. R. Smith, Phys. Fluids 27, 1499 (1984).

    Article  MATH  ADS  Google Scholar 

  18. G. R. Smith, W. M. Nevins, and W. M. Sharp, Phys. Fluids 27, 2120 (1984).

    Article  MATH  ADS  Google Scholar 

  19. I. A. Kotelnikov, D. D. Ryutov, V. V. Katyshev, A. V. Komin, and V. M. Krivosheev, Preprint No. 90-105 (Inst. of Nuclear Physics, Siberian Branch, USSR Acad. Sci., Novosibirsk, 1990).

    Google Scholar 

  20. I. S. Chernoshtanov and Yu. A. Tsidulko, Fusion Sci. Technol. 63 (1T), 319 (2013).

    Google Scholar 

  21. A. V. Anikeev, P. A. Bagryansky, A. A. Ivanov, A. N. Karpushov, S. A. Korepanov, V. V. Maximov, S. V. Murakhtin, A. Yu. Smirnov, K. Noack, and G. Otto, Nucl. Fusion 40, 753 (2000).

    Article  ADS  Google Scholar 

  22. E. I. Soldatkina, P. A. Bagryansky, and A. L. Solomakhin, Plasma Phys. Rep. 34, 259 (2008).

    Article  ADS  Google Scholar 

  23. P. A. Bagryansky, V. N. Bocharov, P. P. Deichuli, A. A. Ivanov, A. N. Karpushov, V. V. Maksimov, A. I. Rogozin, and T. V. Salikova, Preprint No. 93-70 (Inst. of Nuclear Physics, Siberian Branch, Russ. Acad. Sci., Novosibirsk, 1993).

    Google Scholar 

  24. A. V. Kireenko and S. V. Murakhtin, Vopr. At. Nauki Tekh., Ser. Termoyad. Sintez, No. 1, 26 (2008).

    Google Scholar 

  25. P. A. Bagryansky, W. Bell, H. Dreier, S. V. Ivanenko, A. D. Khilchenko, Yu. V. Kovalenko, A. N. Kvashin, H. T. Lamberts, A. A. Lizunov, A. V. Lvovskiy, V. Ya. Savkin, and A. L. Solomakhin, Fusion Sci. Technol. 59 (1T), 120 (2011).

    Google Scholar 

  26. The Physics and Technology of Ion Sources, Ed. by I. G. Brown (Wiley, New York, 1989).

  27. A. V. Anikeev, A. N. Karpushov, S. Collatz, K. Noack, G. Otto, and S. L. Strogalova, Trans. Fusion Technol. 39 (1T), 183 (2001).

    Google Scholar 

  28. D. V. Yurov, S. A. Brednikhin, S. A. Frolov, S. I. Lezhnin, V. V. Prikhodko, and Yu. A. Tsidulko, Fusion Sci. Tecnol. 63 (1T), 313 (2013).

    Google Scholar 

  29. A. V. Anikeev, P. A. Bagryansky, G. I. Kuznetsov, and N. V. Stupishin, Plasma Phys. Rep. 25, 775 (1999).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Anikeev.

Additional information

Original Russian Text © A.V. Anikeev, P.A. Bagryansky, K.V. Zaitsev, O.A. Korobeinikova, S.V. Murakhtin, D.I. Skovorodin, D.V. Yurov, 2015, published in Fizika Plazmy, 2015, Vol. 41, No. 10, pp. 839–849.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikeev, A.V., Bagryansky, P.A., Zaitsev, K.V. et al. Energy spectrum of longitudinal ion losses in the GDT facility under development of Alfvén ion-cyclotron instability. Plasma Phys. Rep. 41, 773–782 (2015). https://doi.org/10.1134/S1063780X15100025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X15100025

Keywords

Navigation