Skip to main content
Log in

Production of Relic Gravitational Waves and the Baryon Asymmetry of the Universe by Random Hypermagnetic Fields

  • ELEMENTARY PARTICLES AND FIELDS
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We study the evolution of hypermagnetic fields (HMFs) in random plasma in the symmetric phase of the early universe. The system of kinetic equations for the spectra of the energy density and the helicity, as well as the particles’ asymmetries is derived. We also formulate the initial condition which involve the Kazantsev and Kolmogorov spectra of the seed HMFs. This system is solved numerically. We predict the energy spectrum of primeval gravitational waves which are produced by these HMFs. Additionally, the baryon asymmetry of the universe, generated by the lepton asymmetries, is obtained. These results allow us to constrain the strength of seed HMFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. A. Neronov and I. Vovk, Science (Washington, DC, U. S.) 328, 73 (2010); arXiv: 1006.3504.

  2. T. Vachaspati, Rep. Prog. Phys. 84, 074901 (2021); arXiv: 2010.10525.

  3. H. B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Weinberg, The Quantum Theory of Fields, Vol. 2: Modern Applications (Cambridge Univ. Press, New York, 1996), p. 370.

  5. M. Joyce and M. Shaposhnikov, Phys. Rev. Lett. 79, 1193 (1997); astro-ph/9703005.

    Article  ADS  Google Scholar 

  6. K. Kamada and A. J. Long, Phys. Rev. D 94, 063501 (2016); arXiv: 1606.08891.

  7. M. Dvornikov and V. B. Semikoz, J. Cosmol. Astropart. Phys. 02, 040 (2012);

  8. J. Cosmol. Astropart. Phys. 08, E01(E) (2012); arXiv: 1111.6876.

  9. M. Dvornikov and V. B. Semikoz, Phys. Rev. D 87, 025023 (2013); arXiv: 1212.1416.

    Article  ADS  Google Scholar 

  10. V. B. Semikoz, A. Yu. Smirnov, and D. D. Sokoloff, Phys. Rev. D 93, 103003 (2016); arXiv: 1604.02273.

  11. S. Abbaslu, S. R. Zadeh, A. Rezaei, and S. S. Gousheh, Phys. Rev. D 104, 056028 (2021); arXiv: 2104.05013.

  12. M. Dvornikov and V. B. Semikoz, Eur. Phys. J. C 81, 1001 (2021); arXiv: 2110.01071.

  13. M. Dvornikov, Int. J. Mod. Phys. D 32, 2250141 (2023); arXiv: 2203.00530.

  14. D. Bödeker and W. Buchmüller, Rev. Mod. Phys. 93, 035004 (2021); arXiv: 2009.07294.

  15. A. Kosowsky, A. Mack, and T. Kahniashvili, Phys. Rev. D 66, 024030 (2002); astro-ph/0111483.

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Brandenburg, Y. He, T. Kahniashvili, M. Rheinhardt, and J. Schober, Astrophys. J. 911, 110 (2021); arXiv: 2101.08178.

  17. M. Dvornikov, J. Cosmol. Astropart. Phys. 01, 021 (2022); arXiv: 2110.04214.

  18. S. D. Odintsov, V. K. Oikonomou, and R. Myrzakulov, Symmetry 14, 729 (2022); arXiv: 2204.00876.

  19. R. Abbott et al. (LIGO Sci. Collab., Virgo Collab., KAGRA Collab.), arXiv: 2111.03606.

  20. Z. Arzoumanian et al. (NANOGrav Collab.), Astrophys. J. Lett. 905, L34 (2020); arXiv: 2009.04496.

  21. M. Evans, R. X. Adhikari, C. Afle, S. W. Ballmer, S. Biscoveanu, S. Borhanian, D. A. Brown, Y. Chen, R. Eisenstein, A. Gruson, A. Gupta, E. D. Hall, R. Huxford, B. Kamai, R. Kashyap, J. S. Kissel, et al., arXiv: 2109.09882.

  22. P. Auclair et al. (LISA Collab.), arXiv: 2204.05434.

  23. M. Maggiore, C. van den Broeck, N. Bartolo, E. Belgacem, D. Bertacca, M. A. Bizouard, M. Branchesi, S. Clesse, S. Foffa, J. García-Bellido, S. Grimm, J. Harms, T. Hinderer, S. Matarrese, C. Palomba, M. Peloso, et al., J. Cosmol. Astropart. Phys. 03, 050 (2020); arXiv: 1912.02622.

  24. É. Pariat, in Topics in Magnetohydrodynamic Topology, Reconnection and Stability Theory, Ed. by D. MacTaggart and A. Hillier (Springer, Cham, 2020), p. 145.

    Google Scholar 

  25. G. Sigl, Phys. Rev. D 66, 123002 (2002); astro-ph/0202424.

    Article  ADS  Google Scholar 

  26. L. Campanelli, Phys. Rev. Lett. 98, 251302 (2007); arXiv: 0705.2308.

    Article  ADS  Google Scholar 

  27. A. P. Kazantsev, Sov. Phys. JETP 26, 1031 (1968).

    ADS  Google Scholar 

  28. A. Brandenburg, T. Kahniashvili, S. Mandal, A. R. Pol, A. G. Tevzadze, and T. Vachaspati, Phys. Rev. D 96, 123528 (2017); arXiv: 1711.03804.

  29. M. Giovannini and M. E. Shaposhnikov, Phys. Rev. D 57, 2186 (1998); hep-ph/9710234.

    Article  ADS  Google Scholar 

  30. S. Weinberg, Cosmology (Oxford Univ. Press, New York, 2020), p. 219.

    Google Scholar 

  31. R. Abbott et al. (LIGO Scientic Collab., Virgo Collab., KAGRA Collab.), Phys. Rev. D 104, 022004 (2021); arXiv: 2101.12130.

  32. A. Brandenburg, H. Zhou, and R. Sharma, Mon. Not. R. Astron. Soc. 518, 3312 (2023); arXiv: 2207.09414.

  33. B. Cheng, D. N. Schramm, and J. W. Truran, Phys. Rev. D 49, 5006 (1994); astro-ph/9308041.

    Article  ADS  Google Scholar 

  34. K. Kamada, F. Uchida, and J. Yokoyama, J. Cosmol. Astropart. Phys. 04, 034 (2021); arXiv: 2012.14435.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Dvornikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvornikov, M. Production of Relic Gravitational Waves and the Baryon Asymmetry of the Universe by Random Hypermagnetic Fields. Phys. Atom. Nuclei 86, 577–582 (2023). https://doi.org/10.1134/S1063778823040178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823040178

Navigation