Skip to main content
Log in

NLO QCD corrections to Drell-Yan processes in the SANC framework

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

NLO QCD corrections to charged and neutral current Drell-Yan processes are computed with help of the computer system SANC. At the partonic level both quark-antiquark and quark-gluon scattering channels are taken into account. Subtraction of collinear singularities in the massive quark scheme is compared with the one in the \( \overline {MS} \) scheme. Numerical results at the hadronic level are received for the LHC conditions with help of Monte-Carlo integrators and event generator programs based on the standard SANC modules. Comparison with analogous results of the MCFM package is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Drell and T.-M. Yan, Phys. Rev. Lett. 25, 316, 902(E) (1970).

    Article  ADS  Google Scholar 

  2. V. M. Abazov et al. (CDF and D0 Collabs.), Phys. Rev.D 70, 092008 (2004); arXiv: 0808.0147 [hep-ex].

    Article  ADS  Google Scholar 

  3. A. Andonov, A. Arbuzov, S. Bondarenko, et al., Phys. Part. Nucl. Lett. 4, 451 (2007).

    Article  Google Scholar 

  4. A. Andonov et al., Comput. Phys. Commun. 174, 481 (2006); 177, 623(E) (2007).

    Article  ADS  Google Scholar 

  5. The SANC System, http://sanc.jinr.ru/; http://pcphsanc.cern.ch/

  6. G. Altarelli, R. K. Ellis, and G. Martinelli, Nucl. Phys. B 157, 461 (1979).

    Article  ADS  Google Scholar 

  7. J. Kubar-Andre and F. E. Paige, Phys. Rev. D 19, 221 (1979).

    Article  ADS  Google Scholar 

  8. B. Humpert and W. L. van Neerven, Nucl. Phys. B 184, 225 (1981).

    Article  ADS  Google Scholar 

  9. R. Hamberg, W. L. van Neerven, and T. Matsuura, Nucl. Phys. B 359, 343 (1991); 644, 403(E) (2002).

    Article  ADS  Google Scholar 

  10. C. Anastasiou et al., Phys. Rev. D 69, 094008 (2004).

    Article  ADS  Google Scholar 

  11. K. Melnikov and F. Petriello, Phys. Rev. D 74, 114017 (2006).

    Article  ADS  Google Scholar 

  12. S. Catani, L. Cieri, G. Ferrera, et al., arXiv: 0903.2120 [hep-ph].

  13. M. A. G. Aivazis, J. C. Collins, F. I. Olness, and W.-K. Tung, Phys. Rev. D 50, 3102 (1994).

    Article  ADS  Google Scholar 

  14. S. Moch and A. Mitov, Acta Phys. Polon. B 38, 3507 (2007) [PoS RADCOR2007, 027 (2007)].

    ADS  Google Scholar 

  15. R. K. Ellis et al. (QCD Tools Working Group), hepph/0011122.

  16. A. Arbuzov, D. Bardin, S. Bondarenko, et al., Eur. Phys. J. C 46, 407 (2006); 50, 505(E) (2007).

    Article  ADS  Google Scholar 

  17. A. Arbuzov, D. Bardin, S. Bondarenko, et al., Eur. Phys. J. C 54, 451 (2008).

    Article  ADS  Google Scholar 

  18. A. B. Arbuzov and R. R. Sadykov, JETP 106, 488 (2008).

    Article  ADS  Google Scholar 

  19. C. E. Gerber et al. (TeV4LHC-Top and Electroweak Working Group), arXiv: 0705.3251 [hep-ph].

  20. C. Buttar et al., arXiv: 0803.0678 [hep-ph].

  21. D. Bardin, S. Bondarenko, S. Jadach, et al., Acta Phys. Polon. B 40, 75 (2009).

    ADS  Google Scholar 

  22. J. A.M. Vermaseren, math-ph/0010025.

  23. A. Andonov et al., arXiv: 0901.2785 [hep-ph].

  24. B. Mele and P. Nason, Nucl. Phys. B 361, 626 (1991).

    Article  ADS  Google Scholar 

  25. J. Pumplin, D. R. Stump, J. Huston, et al., J. High Energy Phys. 0207, 012 (2002).

    Article  ADS  Google Scholar 

  26. G. P. Lepage, J. Comput. Phys. 27, 192 (1978).

    Article  MATH  ADS  Google Scholar 

  27. S. Jadach, Comput. Phys. Commun. 152, 55 (2003).

    Article  ADS  Google Scholar 

  28. A. Andonov et al., Comput. Phys. Commun. 181, 305 (2010); arXiv: 0812.4207 [physics.comp-ph].

    Article  ADS  Google Scholar 

  29. G. Balossini et al., arXiv: 0907.0276 [hep-ph].

  30. T. Sjostrand, S. Mrenna, and P. Skands, J. High Energy Phys. 0605, 026 (2006).

    Article  ADS  Google Scholar 

  31. G. Corcella et al., J. High Energy Phys. 0101, 010 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Arbuzov.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andonov, A., Arbuzov, A.B., Bondarenko, S.G. et al. NLO QCD corrections to Drell-Yan processes in the SANC framework. Phys. Atom. Nuclei 73, 1761–1769 (2010). https://doi.org/10.1134/S106377881010011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377881010011X

Keywords

Navigation