Skip to main content
Log in

Distribution of Iron Atoms in Nonequivalent Crystallographic Sites of Fe7C3 Carbide in Core–Shell Nanostructures

  • NANOMATERIALS AND CERAMICS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The structure and magnetic properties of iron carbide nanoparticles encapsulated into carbon shells, obtained as a result of ferrocene transformations at a pressure of 8 GPa and different temperatures, have been investigated by powder X-ray diffraction, transmission electron microscopy, and Mössbauer spectroscopy. It is found that the main crystalline carbide states are hexagonal phase Fe7C3 and cementite Fe3C, whose relative contents are determined by the treatment temperature. Mössbauer spectroscopy was used to identify three nonequivalent states of iron atoms in the structural sites of Fe7C3 hexagonal lattice. It is established that the occupancies of these sites differ from the known values for the bulk material, which is related to the specific features of structure formation under conditions of high pressure and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. Yu, B. Sun, Y. Pei, et al., J. Am. Chem. Soc. 132, 935 (2010).

    Article  Google Scholar 

  2. R. S. Ruoff, D. C. Lorents, B. Chan, et al., Science 259, 346 (1993).

    Article  ADS  Google Scholar 

  3. J. L. Tu, M. Y. Ding, Q. Zhang, et al., Chem. Cat. Chem. 7, 2323 (2015).

    Google Scholar 

  4. Y. L. Hsin, C. F. Lin, Y. C. Liang, et al., Adv. Funct. Mater. 18, 2048 (2008).

    Article  Google Scholar 

  5. B. Lu, H. Huang, X. L. Dong, et al., J. Phys. D: Appl. Phys. 43, 105403 (2010).

    Article  ADS  Google Scholar 

  6. S. Peng, C. Wang, J. Xie, et al., J. Am. Chem. Soc. 128, 10676 (2006).

    Article  Google Scholar 

  7. Y. W. Chen, T. Y. Liu, P. J. Chen, et al., Small 12, 1458 (2016).

    Article  Google Scholar 

  8. J. Yu, X. Chu, and Y. Hou, Chem. Commun. 50, 11614 (2014).

    Article  Google Scholar 

  9. V. Davydov, A. Rakhmanina, I. Kireev, et al., J. Mater. Chem. B 2, 4250 (2014).

    Article  Google Scholar 

  10. I. Alieva, I. Kireev, A. Rakhmanina, et al., Nanosyst. Phys. Chem. Math. 7, 158 (2016).

    Google Scholar 

  11. D. B. Cao, F. Q. Zhang, Y. W. Li, et al., J. Phys. Chem. B 109, 10922 (2005).

    Article  Google Scholar 

  12. E. De Smit, I. Swart, J. F. Creemer, et al., Nature 456, 222 (2008).

    Article  ADS  Google Scholar 

  13. J. Blanchard and N. Abatzoglou, Catal. Today. 237, 150 (2014).

    Article  Google Scholar 

  14. K. Xu, B. Sun, J. Lin, et al., Nat. Commun. 5, 5783 (2014).

    Article  Google Scholar 

  15. M. Xiao, J. Zhu, L. Feng, et al., Adv. Mater. 27, 2521 (2015).

    Article  Google Scholar 

  16. M. B. Zakaria, RSC Adv. 6, 10341 (2016).

  17. V. Vij, J. N. Tiwari, W. G. Lee, et al., Sci. Rep. 6, 20132 (2016).

    Article  ADS  Google Scholar 

  18. H. Huang, X. Feng, C. Du, et al., J. Mater. Chem. A 3, 4976 (2015).

    Article  Google Scholar 

  19. Y. Tan, K. Zhu, D. Li, et al., Chem. Eng. J. 258, 93 (2014).

    Article  Google Scholar 

  20. K. Ujimine and A. Tsutsumi, J. Power Sources 160, 1431 (2006).

    Article  ADS  Google Scholar 

  21. M. Yan, Y. Yao, J. Wen, et al., J. Alloys Compd. 641, 170 (2015).

    Article  Google Scholar 

  22. E. C. Vermisoglou, E. Devlin, T. Giannakopoulou, et al., J. Alloys Compd. 590, 102 (2014).

    Article  Google Scholar 

  23. J. Yu, F. Chen, W. Gao, et al., Nanoscale Horiz. 2, 81 (2017).

    Article  ADS  Google Scholar 

  24. P. C. Eklund, J. Mater. Res. 8, 1666 (1993).

    Article  Google Scholar 

  25. M. Audier, P. Bowen, and W. Jones, J. Cryst. Growth 63, 125 (1983).

    Article  ADS  Google Scholar 

  26. M. M. Serna, E. R. B. Jesus, E. Galego, et al., Mater. Sci. Forum. 530, 48 (2006).

    Article  Google Scholar 

  27. W. Wu, Z. Zhu, Z. Liu, et al., Carbon N. Y. 41, 317 (2003).

    Google Scholar 

  28. V. D. Blank, B. A. Kulnitskiy, D. V. Batov, et al., Diam. Relat. Mater. 11, 931 (2002).

    Article  ADS  Google Scholar 

  29. K. Miura, M. Itoh, and K. I. Machida, Jpn. J. Appl. Phys. 47, 2342 (2008).

    Article  ADS  Google Scholar 

  30. M. Kowalski, J. Appl. Crystallogr. 18, 430 (1985).

    Article  Google Scholar 

  31. F. H. Herbstein and J. A. Snyman, Inorg. Chem. 3, 894 (1964).

    Article  Google Scholar 

  32. J. P. Morniroli, H. Ayatti, K. M. Knowles, et al., J. Less-Common Met. 155, 215 (1989).

    Article  Google Scholar 

  33. R. Fruchart, J. Senateur, and A. Bouchaud Michel, Bull. Soc. Chim. Fr. 2, 392 (1965).

    Google Scholar 

  34. C. M. Fang, M. A. van Huis, and H. W. Zandbergen, Phys. Rev. B 80, 224108 (2009).

    Article  ADS  Google Scholar 

  35. X. W. Liu, S. Zhao, Y. Meng, et al., Sci. Rep. 6, 26184 (2016).

    Article  ADS  Google Scholar 

  36. R. Miyatani, Y. Yamada, and Y. Kobayashi, J. Radioanal. Nucl. Chem. 303, 1503 (2015).

    Article  Google Scholar 

  37. H. L. Yakel, Int. Met. Rev. 30, 17 (1985).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by Russian Science Foundation (grant no. 14-12-00848 P) in the part of Mössbauer spectroscopy, by Russian Foundation for Basic Research (grant no. 18-03-00939) in the part of sample synthesis and electron microscopy research, by the Ministry of Science and Higher Education within the State assignment FSRC “Crystallography and photonics” RAS in the part of X-ray diffraction research, and by the program of the Presidium of the Russian Academy of Sciences no. 32 “Nanostructures: physics, chemistry, biology, technology fundamentals” in the part of data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Baskakov.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskakov, A.O., Starchikov, S.S., Lyubutin, I.S. et al. Distribution of Iron Atoms in Nonequivalent Crystallographic Sites of Fe7C3 Carbide in Core–Shell Nanostructures. Crystallogr. Rep. 64, 331–336 (2019). https://doi.org/10.1134/S1063774519020056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774519020056

Navigation