Skip to main content
Log in

Evolution of the number of accreting white dwarfs with shell nuclear burning and the SNe Ia rate

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We analyze the time evolution of the number of accreting white dwarfs with surface shell hydrogen burning in semidetached and detached binaries. We consider the case where continuous star formation with a constant rate takes place in a stellar system over 1010 Gyr and the case of a starburst in which the same mass of stars is formed over 109 Gyr. The evolution of the number of white dwarfs is compared with the evolution of the rate of events that are usually considered as SNe Ia and/or accretion-induced collapses, i.e., the accumulation of a Chandrasekhar mass by white dwarfs or the merger of white dwarf pairs with a total mass greater than or equal to the Chandrasekhar one. In stellar systems with a starburst, the supersoft X-ray sources observed at t = 1010 yr are most likely not the progenitors of SNe Ia. The same is true for a significant fraction of the sources in systems with a constant star formation rate. In both cases, the merger of white dwarfs is the dominant mechanism of SNe Ia. In symbiotic binaries, accreting CO dwarfs do not accumulate enough mass for an SNe Ia explosion, while ONeMg dwarfs finish their evolution by an accretion-induce collapse with the formation of a neutron star.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Allen, Publ. Astron. Soc. Austral. 5, 369 (1984).

    ADS  Google Scholar 

  2. C. Badenes, J. P. Hughes, E. Bravo, et al., Astrophys. J. 662, 472 (2007).

    Article  ADS  Google Scholar 

  3. K. Belczyński, J. Mikołajewska, U. Munari, et al., Astron. Astrophys. Suppl. Ser. 146, 407 (2000).

    Article  ADS  Google Scholar 

  4. A. I. Bogomazov and A. V. Tutukov, Astron. Zh. 86, 240 (2009) [Astron. Rep. 53, 214 (2009)].

    Google Scholar 

  5. H. Bondi, Mon. Not. R. Astron. Soc. 112, 195 (1952).

    MathSciNet  ADS  Google Scholar 

  6. E. Cappellaro, R. Evans, and M. Turatto, Astron. Astrophys. 351, 459 (1999).

    ADS  Google Scholar 

  7. R. L. M. Corradi, E. R. Rodríguez-Flores, A. Mampaso, et al., Astron. Astrophys. 480, 409 (2008).

    Article  ADS  Google Scholar 

  8. R. L. M. Corradi, M. Valentini, U. Munari, et al., Astron. Astrophys. 509, A41 (2010).

    Article  ADS  Google Scholar 

  9. W. Dehnen and J. Binney, Mon. Not. R. Astron. Soc. 294, 429 (1998).

    Article  ADS  Google Scholar 

  10. L. Dessart, A. Burrows, C. Ott, et al., Astrophys. J. 664, 1063 (2006).

    Article  ADS  Google Scholar 

  11. A. V. Fedorova, A. V. Tutukov, and L. R. Yungelson, Pis’ma Astron. Zh. 30, 92 (2004) [Astron. Lett. 30,73 (2004)].

    Google Scholar 

  12. C. L. Fryer, S. E. Woosley, M. Herant, et al., Astrophys. J. 520, 650 (1999).

    Article  ADS  Google Scholar 

  13. S. Geier, S. Nesslinger, U. Heber, et al., Astron. Astrophys. 464, 299 (2007).

    Article  ADS  Google Scholar 

  14. M. Gilfanov and A. Bogdań, Nature 463, 924 (2010).

    Article  ADS  Google Scholar 

  15. G. Gilmore, ASP Conf. Ser. 230, 3 (2001).

    ADS  Google Scholar 

  16. I. Hachisu, M. Kato, and K. Nomoto, Astrophys. J. 522, 487 (1999).

    Article  ADS  Google Scholar 

  17. E. P. J. van den Heuvel, D. Bhattacharya, K. Nomoto, et al., Astron. Astrophys. 262, 97 (1992).

    ADS  Google Scholar 

  18. M. Hicken, P. M. Garnavich, J. L. Prieto, et al., Astrophys. J. 669, L17 (2007).

    Article  ADS  Google Scholar 

  19. M. S. Hjellming and R. F. Webbink, Astrophys. J. 318, 794 (1987).

    Article  ADS  Google Scholar 

  20. D. A. Howell, M. Sullivan, P. E. Nugent, et al., Nature 443, 308 (2006).

    Article  ADS  Google Scholar 

  21. J. R. Hurley, C. A. Tout and O. R. Pols, Mon. Not. R. Astron. Soc. 329, 897 (2002).

    Article  ADS  Google Scholar 

  22. I. Iben, Jr. and A. V. Tutukov, Astrophys. J. Suppl. Ser. 54, 335 (1984).

    Article  ADS  Google Scholar 

  23. I. Iben, Jr. and A. V. Tutukov, Astrophys. J. Suppl. Ser. 105, 145 (1996).

    Article  ADS  Google Scholar 

  24. H. E. Jorgensen, V. M. Lipunov, I. E. Panchenko, et al., Astrophys. J. 486, 110 (1997).

    Article  ADS  Google Scholar 

  25. D. Kasen, Astrophys. J. 708, 1025 (2010).

    Article  ADS  Google Scholar 

  26. M. Kato and I. Hachisu, Astrophys. J. 437, 802 (1994).

    Article  ADS  Google Scholar 

  27. C. Kobayashi, T. Tsujimoto, and K. Nomoto, Astrophys. J. 539, 26 (2000).

    Article  ADS  Google Scholar 

  28. Z. T. Kraicheva, E. I. Popova, A. V. Tutukov, et al., Pis’ma Astron. Zh. 7, 269 (1981) [Sov. Astron. Lett. 7, 149 (1981)].

    Google Scholar 

  29. V. M. Lipunov and K. A. Postnov, Astrophys. Space Sci. 145, 1 (1988).

    Article  ADS  Google Scholar 

  30. G. Lü, L. Yungelson, and Z. Han, Mon. Not. R. Astron. Soc. 372, 1389 (2006).

    Article  ADS  Google Scholar 

  31. F. Mannucci, M. Della Valle, N. Panagia, et al., Astron. Astrophys. 433, 807 (2005).

    Article  ADS  Google Scholar 

  32. N. Mennekens, D. Vanbeveren, J.-P. De Greve, et al., Astron. Astrophys. 515, A89 (2010).

    Article  ADS  Google Scholar 

  33. B. D. Metzger, A. L. Piro, and E. Quataert, Mon. Not. R. Astron. Soc. 396, 1659 (2009).

    Article  ADS  Google Scholar 

  34. U. Munari and A. Renzini, Astrophys. J. 397, L87 (1992).

    Article  ADS  Google Scholar 

  35. R. Napiwotzki, C. A. Karl, G. Nelemans, et al., ASP Conf. Ser. 372, 387 (2007).

    ADS  Google Scholar 

  36. G. Nelemans and C. A. Tout, Mon. Not. R. Astron. Soc. 356, 753 (2005).

    Article  ADS  Google Scholar 

  37. G. Nelemans, F. Verbunt, L. R. Yungelson, et al., Astron. Astrophys. 360, 1011 (2000).

    ADS  Google Scholar 

  38. G. Nelemans, L. R. Yungelson, S. F. Portegies Zwart, et al., Astron. Astrophys. 365, 491 (2001).

    Article  ADS  Google Scholar 

  39. K. Nomoto, Astrophys. J. 277, 791 (1984).

    Article  ADS  Google Scholar 

  40. K. Nomoto and Y. Kondo, Astrophys. J. 367, L19 (1991).

    Article  ADS  Google Scholar 

  41. F. Patat, P. Chandra, R. Chevalier, et al., Science 317, 924 (2007).

    Article  ADS  Google Scholar 

  42. A. J. T. Poelarends, F. Herwig, N. Langer, et al., Astrophys. J. 675, 614 (2008).

    Article  ADS  Google Scholar 

  43. D. Prialnik and A. Kovetz, Astrophys. J. 445, 789 (1995).

    Article  ADS  Google Scholar 

  44. C. Ritossa, E. Garcia-Berro, and I. Iben, Jr., Astrophys. J. 460, 489 (1996).

    Article  ADS  Google Scholar 

  45. P. Rodríguez-Gil, M. Santander-Garcá, C. Knigge, et al., arXiv1006.1075 (2010).

  46. A. J. Ruiter, K. Belczynski, and S. Fryer, Astrophys. J. 699, 2026 (2009).

    Article  ADS  Google Scholar 

  47. R. A. Scalzo, G. Aldering, P. Antilogus, et al., Astrophys. J. 713, 1073 (2010).

    Article  ADS  Google Scholar 

  48. J. M. Silverman, M. Ganeshalingam, W. Li, et al., arXiv:1003.2417 (2010).

  49. R. Stefano, Astrophys. J. 712, 728 (2010a).

    Article  ADS  Google Scholar 

  50. R. Stefano, arXiv:1004.1193 (2010b).

  51. G. Tovmassian, L. Yungelson, T. Rauch, et al., Astrophys. J. 714, 178 (2010).

    Article  ADS  Google Scholar 

  52. J.W. Truran and A.G.W. Cameron, Astrophys.Space Sci. 14, 179 (1971).

    Article  ADS  Google Scholar 

  53. A. V. Tutukov and L. Yungelson, in Proc. of the IAU Symp. 83, Ed. by P. S. Conti and C. W. H. de Loore (Reidel, Dordrecht, 1979), p. 401.

    Google Scholar 

  54. A. V. Tutukov and L. Yungelson, Mon. Not. R. Astron. Soc. 268, 871 (1994).

    ADS  Google Scholar 

  55. A. V. Tutukov and L. R. Yungelson, Astron. Rep. 46, 667 (2002).

    Article  ADS  Google Scholar 

  56. S. Vereshchagin, A. Tutukov, L. R. Yungelson, et al., Astrophys. Space Sci. 142, 245 (1988).

    Article  ADS  Google Scholar 

  57. N. Vranesevic, R. N. Manchester, D. R. Lorimer, et al., Astrophys. J. 617, L139 (2004).

    Article  ADS  Google Scholar 

  58. R. F. Webbink, Astrophys. J. 277, 355 (1984).

    Article  ADS  Google Scholar 

  59. J. Whelan and I. Iben, Jr., Astrophys. J. 186, 1007 (1973).

    Article  ADS  Google Scholar 

  60. C.-S. Yoon, P. Podsiadlowski, and S. Rosswog, Mon. Not. R. Astron. Soc. 380, 933 (2007).

    Article  ADS  Google Scholar 

  61. F. Yuan, R. M. Quimby, J. C. Wheeler, et al., arXiv:1004.3329 (2010).

  62. L. R. Yungelson, M. Livio, J.W. Truran, et al., Astrophys. J. 466, 890 (1996).

    Article  ADS  Google Scholar 

  63. L. R. Yungelson, M. Livio, A. Tutukov, et al., Astrophys. J. 447, 656 (1995).

    Article  ADS  Google Scholar 

  64. L. R. Yungelson and M. Livio, Astrophys. J. 497, 168 (1998).

    Article  ADS  Google Scholar 

  65. L. R. Yungelson and M. Livio, Astrophys. J. 528, 108 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Yungelson.

Additional information

Original Russian Text © L.R. Yungelson, 2010, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2010, Vol. 36, No. 11, pp. 823–831.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yungelson, L.R. Evolution of the number of accreting white dwarfs with shell nuclear burning and the SNe Ia rate. Astron. Lett. 36, 780–787 (2010). https://doi.org/10.1134/S1063773710110034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773710110034

Key words

Navigation