Skip to main content
Log in

Cosmological constraints on the neutrino mass from CMB anisotropy and large-scale structure of the Universe

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Using cosmological data on the CMB anisotropy and large-scale structure of the Universe, we have obtained new constraints on the sum of the masses of three generations of active neutrinos: Σm ν < 1.05 eV (95% confidence level). Data of the third year of the WMAP mission served as the source of CMB anisotropy data. The mass functions of X-ray clusters of galaxies were taken as the data on the large-scale structure of the Universe. The observational properties of the clusters were obtained during the ROSAT mission and the assumption that the baryon fraction is universal in the Universe was used to determine the total cluster mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Aharmim, N. Ahmed, A. E. Anthony, et al. (SNO Collab.), Phys. Rev. D. 72, 052010 (2005).

    Google Scholar 

  2. S. W. Allen, R. W. Schmidt, and S. L. Bridle, Astrophys. J. 595, 1206 (2003).

    Article  Google Scholar 

  3. G. Altarelli and F. Feruglio, New J. Phys. 6, 106 (2004).

    Article  ADS  Google Scholar 

  4. N. A. Arhipova, T. Kahniashvili, and V. N. Lukash, Astron. Astrophys. 386, 775 (2002).

    Article  MATH  ADS  Google Scholar 

  5. Y. Ashie, J. Hosaka, K. Ishihara, et al. (Super-Kamiokande Collab.), Phys. Rev. D. 71, 112 005 (2005).

    Google Scholar 

  6. S. Cole, W. J. Percival, and J. A. Peacock, Mon. Not. R. Astron. Soc. 362, 505 (2005).

    Article  ADS  Google Scholar 

  7. H. K. Eriksen, G. Huey, R. Saha, et al., Astrophys. J. 656, 641 (2007).

    Article  ADS  Google Scholar 

  8. M. C. González-García and Y. Nir, Rev. Mod. Phys. 75, 345 (2003).

    Article  ADS  Google Scholar 

  9. A. Goobar, S. Hannestad, E. Mortsell, et al., J. Cosmol. Astropart. Phys. 0606, 019 (2006).

    Article  ADS  Google Scholar 

  10. K. M. Huffenberger, H. K. Eriksen, and F. K. Hansen, Astrophys. J. 651, L81 (2006).

    Article  ADS  Google Scholar 

  11. G. Hinshaw, M. R. Nolta, C. L. Bennett, et al., Astrophys. J., Suppl. Ser. 170, 288 (2007).

    Article  ADS  Google Scholar 

  12. M. Hirsch and J. W. F. Valle, New J. Phys. 6, 76 (2004).

    Article  ADS  Google Scholar 

  13. A. Jenkins, C. S. Frenk, S. D. M. White, et al., Mon. Not. R. Astron. Soc. 321, 372 (2001).

    Article  ADS  Google Scholar 

  14. T. Kahniashvili, E. von Toerne, N. A. Arhipova, et al., Phys. Rev. D. 71, 125 009 (2005).

    Google Scholar 

  15. J. R. Kristiansen, H. K. Eriksen, and O. Elgaroy, Phys. Rev. D 74, 123 005 (2006).

    Google Scholar 

  16. J. R. Kristiansen, O. Elgaroy, and H. Dahle, Phys. Rev. D 75, 083510 (2007).

    Google Scholar 

  17. J. Lesgourgues and S. Pastor, Phys. Rep. 429, 307 (2006).

    Article  ADS  Google Scholar 

  18. A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J. 538, 473 (2000).

    Article  ADS  Google Scholar 

  19. V. N. Lukash, in Proceedings of the IAU Symposium: Large Scale Structures of the Universe, Ed. by J. Audouze et al. (Kluwer, Dordrecht, 1988), p. 77.

    Google Scholar 

  20. A. M. Malinovsky, V. N. Lukash, and E. V. Mikheev, Astron. Rep 82, 1 (2008).

    Google Scholar 

  21. E. V. Mikheev, V. N. Lukash, N. A. Arkhipov, et al., Astron. Zh. 78, 195 (2001) [Astron. Rep. 45, 163 (2001)].

    Google Scholar 

  22. R. N. Mohapatra and A. Y. Smirnov, Ann. Rev. Nucl. Part. Sci. 56, 569 (2006).

    Article  ADS  Google Scholar 

  23. B. Novosyadlyj, R. Durrer, S. Gottlöber et al., Astron. Astrophys. 356, 418 (2000).

    ADS  Google Scholar 

  24. W. J. Percival, R. C. Nichol, D. J. Eisenstein, et al., Astrophys. J. 657, 645 (2007a).

    Article  ADS  Google Scholar 

  25. W. J. Percival, S. Cole, and D. J. Eisenstein, Mon. Not. R. Astron. Soc. 381, 1053 (2007b).

    Article  ADS  Google Scholar 

  26. B. Pontecorvo, Zh. Eksp. Teor. Fiz. 33, 549 (1957) [Sov. Phys. JETP 6, 429 (1957)].

    Google Scholar 

  27. U. Seljak, A. Slosar, and P. McDonald, J. Cosmol. Astropart. Phys. 0610, 014 (2006).

    Article  ADS  Google Scholar 

  28. D. N. Spergel, R. Bean, O. Doré, et al., Astrophys. J., Suppl. Ser. 170, 377 (2007).

    Article  ADS  Google Scholar 

  29. M. Tegmark, M. Strauss, M. Blanton, et al., Phys. Rev. D 69, 103 501 (2004a).

  30. M. Tegmark, M. Blanton, M. Strauss, et al., Astrophys. J. 606, 702 (2004b).

    Article  ADS  Google Scholar 

  31. M. Tegmark, D. Eisenstein, M. Strauss, et al., Phys. Rev. D 74, 123 507 (2006).

  32. A. Voevodkin and A. Vikhlinin, Astrophys. J. 601, 610 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Malinovsky.

Additional information

Original Russian Text © A.M. Malinovsky, A.A. Voevodkin, V.N. Lukash, E.V. Mikheeva, A.A. Vikhlinin, 2008, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2008, Vol. 34, No. 7, pp. 490–495.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malinovsky, A.M., Voevodkin, A.A., Lukash, V.N. et al. Cosmological constraints on the neutrino mass from CMB anisotropy and large-scale structure of the Universe. Astron. Lett. 34, 445–450 (2008). https://doi.org/10.1134/S1063773708070025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773708070025

PACS numbers

Key words

Navigation