Skip to main content
Log in

Astrocytes of the Brain: Retinue Plays the King

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Besides neurons, there are many other cells in the brain tissue grouped under the name “glia.” According to our current knowledge, humans have the approximately same number of neurons and glial cells. Among glial cells, astrocytes occupy a special position because of their fantastic multifunctionality, which can be uncovered from new angles. The history of the study of astrocytes goes back over 100 years. During that time, they have been firmly considered as supportive and service cells and, therefore, have always been “in the shadow” of neurons. New tools of molecular genetics that allow cell labeling, cell manipulations in vitro and in vivo, experimental gene knock-out, and regulation of gene expression—coupled with new methods of cell imaging—have opened wide possibilities for solving problems of fundamental biology. They have led to two important discoveries: (1) astrocytes are close in function to neurons and (2) they play an important role in brain repair and regeneration. There has been intensive research in the areas associated with each of these discoveries since the 1990s. However, research in each of them has followed separate paths, and there has been little overlap. This is not surprising since modern research is often highly specialized and focused on details so deep that a sense of the integrity of the object and the problem is lost. In the case of astrocytes, this is the case. One direction of research, extremely important for understanding brain function, has focused on the physiology of astrocytes and their involvement in the regulation of synaptic activity of neurons. Research in the other direction has involved the study of neural stem cells. They have revealed the properties of stem cells in astrocytes as well as their ability to be reprogrammed into neurons. The amount of data generated by studying astrocytes is huge. Therefore, each of the reviews devoted to them usually covers only one narrow topic. Therefore, the aim of our review is to combine the information from two areas of research mentioned above. This will provide the most complete picture of the current state of knowledge in astrocyte biology and will outline new ways of studying normal brain functioning and its reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Adamsky, A., Kol., A., Kreisel, T., et al., Astrocytic activation generates de novo neuronal potentiation and memory enhancement, Cell, 2018, vol. 174, no. 1, pp. 59–71.

    Article  CAS  PubMed  Google Scholar 

  2. Akdemir, E.S., Huang, A.Y., and Deneen, B., Astrocytogenesis: where, when, and how, F1000Research, 2020, vol. 9. https://doi.org/10.12688/f1000research.22405.1

  3. Allen, N.J., Bennett, M.L., Foo, L.C., et al., Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors, Nature, 2012, vol. 486, no. 7403, pp. 410–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Allen, N.J. and Eroglu, C., Cell biology of astrocyte-synapse interactions, Neuron, 2017, vol. 96, no. 3, pp. 697–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alunni, A. and Bally-Cuif, L., A comparative view of regenerative neurogenesis in vertebrates, Development, 2016, vol. 143, no. 5, pp. 741–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Angulo, M.C., Kozlov, A.S., Charpak, S., et al., Glutamate released from glial cells synchronizes neuronal activity in the hippocampus, J. Neurosci., 2004, vol. 24, pp. 6920–6927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Araque, A., Parpura, V., Sanzgiri, R.P., et al., Tripartite synapses: glia, the unacknowledged partner, Trends Neurosci., 1999, vol. 22, no. 5, pp. 208–215.

    Article  CAS  PubMed  Google Scholar 

  8. Araque, A., Carmignoto, G., Haydon, P.G., et al., Gliotransmitters travel in time and space, Neuron, 2014, vol. 81, pp. 728–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aravantinou-Fatorou, K., Vejdani, S., and Thomaidou, D., Cend1 and neurog2 efficiently reprogram human cortical astrocytes to neural precursor cells and induced-neurons, Int. J. Dev. Biol., 2021, vol. 5, no. 3, pp. 405–418.

    Google Scholar 

  10. Arellano, J.I., Morozov, Y.M., Micali, N., et al., Radial glial cells: new views on old questions, Neurochem. Res., 2021, vol. 46, no. 10, pp. 2512–2524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arendt, T., Cell cycle activation and aneuploid neurons in Alzheimer’s disease, Mol. Neurobiol., 2012, vol. 46, pp. 125–135.

    Article  CAS  PubMed  Google Scholar 

  12. De Azevedo, L.C., Fallet, C., Moura-Neto, V., et al., Cortical radial glial cells in human fetuses: depth-correlated transformation into astrocytes, J. Neurobiol., 2003, vol. 55, no. 3, pp. 288–298.

    Article  Google Scholar 

  13. Bak, L.K., Schousboe, A., and Waagepetersen, H.S., The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer, J. Neurochem., 2006, vol. 98, no. 3, pp. 641–653.

    Article  CAS  PubMed  Google Scholar 

  14. Bandeira, F., Lent, R., and Herculano-Houzel, S., Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, no. 33, pp. 14108–14113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bantle, C.M., Hirst, W.D., Weihofen, A., et al., Mitochondrial dysfunction in astrocytes: a role in Parkinson’s disease?, Front. Cell. Dev. Biol., 2021, vol. 8, no. 608026. eCollection 2020.

  16. Barbar, L., Jain, T., Zimmer, M., et al., CD49f is a novel marker of functional and reactive human iPSC-derived astrocytes, Neuron, 2020, vol. 107, no. 3, pp. 436–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barker, R.A., Götz, M., and Parmar, M., New approaches for brain repair-from rescue to reprogramming, Nature, 2018, vol. 557, no. 7705, pp. 329–334.

    Article  CAS  PubMed  Google Scholar 

  18. Barnabé-Heider, F., Wasylnka, J.A., Fernandes, K.J.L., et al., Evidence that embryonic neurons regulate the onset of cortical gliogenesis via Cardiotrophin-1, Neuron, 2005, vol. 48, no. 2, pp. 253–265.

    Article  PubMed  CAS  Google Scholar 

  19. von Bartheld, C.S., Bahney, J., and Herculano-Houzel, S., The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting, J. Comp. Neurol., 2016, vol. 524, no. 18, pp. 3865–3895.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bayraktar, O.A., Fuentealba, L.C., Alvarez-Buylla, A., et al., Astrocyte development and heterogeneity, Cold. Spring. Harb. Perspect. Biol., 2014, vol. 7, no. 1, article ID a020362.

    Article  PubMed  Google Scholar 

  21. Bayraktar, O.A., Bartels, T., Holmqvist, S., et al., Astrocyte layers in the mammalian cerebral cortex revealed by a single-cell in situ transcriptomic map, Nat. Neurosci., 2020, vol. 23, no. 4, pp. 500–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Becerra-Calixto, A. and Cardona-Gómez, G.P., The role of astrocytes in neuroprotection after brain stroke: potential in cell therapy, Front. Mol. Neurosci., 2017, vol. 10, p. 88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bernardinelli, Y., Randall, J., Janett, E., et al., Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability, Curr. Biol., 2014, vol. 24, no. 15, pp. 1679–1688.

    Article  CAS  PubMed  Google Scholar 

  24. Berninger, B., Costa, M.R., Koch, U., et al., Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia, J. Neurosci., 2007, vol. 27, no. 32, pp. 8654–8664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bindocci, E., Savtchouk, I., Liaudet, N., et al., Three-dimensional Ca2+ imaging advances understanding of astrocyte biology, Science, 2017, vol. 356, no. 6339, article ID eaai8185.

    Article  PubMed  CAS  Google Scholar 

  26. Blanchette, M. and Daneman, R., Formation and maintenance of the BBB, Mech. Dev., 2015, vol. 138, no. 1, pp. 8–16.

    Article  CAS  PubMed  Google Scholar 

  27. Bonni, A., Sun, Y., Nadal-Vicens, M., et al., Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway, Science, 1997, vol. 278, no. 5337, pp. 477–483.

    Article  CAS  PubMed  Google Scholar 

  28. Brazhe, A.R., Doronin, M.S., Popov, A.V., et al., Investigation of calcium dynamics patterns in brain astrocyte networks, Ross. Fiziol. Zh. im. I.M. Sechenova, 2019, vol. 105, no. 11, pp. 1436–1451.

    Google Scholar 

  29. Buffo, A., Rite, I., Tripathi, P., et al., Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 3581–3586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bulstrode, H., Johnstone, E., and Marques-Torrejon, M.A., Elevated FOXG1 and SOX2 in glioblastoma enforces neural stem cell identity through transcriptional control of cell cycle and epigenetic regulators, Genes Dev., 2017, vol. 31, no. 8, pp. 757–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Burns, K.A., Murphy, B., Danzer, S.C., et al., Developmental and post-injury cortical gliogenesis: a genetic fate-mapping study with Nestin-CreER mice, Glia, 2009, vol. 57, no. 10, pp. 1115–1129.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bushong, E.A., Martone, M.E., Jones, Y.Z., et al., Protoplasmic astrocytes in ca1 stratum radiatum occupy separate anatomical domains, J. Neurosci., 2002, vol. 22, no. 1, pp. 183–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bushong, E.A., Martone, M.E., and Ellisman, M.H., Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development, Int. J. Dev. Neurosci., 2004, vol. 22, no. 2, pp. 73–86.

    Article  PubMed  Google Scholar 

  34. Calvo-Rodriguez, M., Kharitonova, E.K., and Bacskai, B.J., Therapeutic strategies to target calcium dysregulation in Alzheimer’s disease, Cells, 2020, vol. 9, no. 11, p. 2513.

    Article  CAS  PubMed Central  Google Scholar 

  35. Chen, G., In vivo confusion over in vivo conversion, Mol. Ther., 2021, vol. 29, no. 11, pp. 3097–3098.

    Article  CAS  PubMed  Google Scholar 

  36. Chen, Y.C., Ma, N.X., Pei, Z.F., et al., A NeuroD1 AAV-based gene therapy for functional brain repair after ischemic injury through in vivo astrocyte-to-neuron conversion, Mol. Ther., 2019, vol. 28, pp. 217–234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chiareli, R.A., Carvalho, G.A., Marques, B.L., et al., The role of astrocytes in the neurorepair process, Front. Cell. Dev. Biol., 2021, vol. 9, article ID 665795.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Corti, S., Nizzardo, M., Simone, C., et al., Direct reprogramming of human astrocytes into neural stem cells and neurons, Exp. Cell Res., 2012, vol. 318, no. 13, pp. 1528–1541.https://doi.org/10.1016/j.yexcr.2012.02.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Das, G., Gupta, V., and Ghosh, S., Glial-neuron transformation by “chemical cocktail,” ACS Chem. Neurosci., 2019, vol. 10, no. 1, pp. 42–43.

    Article  CAS  PubMed  Google Scholar 

  40. Deneen, B., Ho, R., Lukaszewicz, A., et al., The transcription factor nfia controls the onset of gliogenesis in the developing spinal cord, Neuron, 2006, vol. 52, no. 6, pp. 953–968.

    Article  CAS  PubMed  Google Scholar 

  41. Dimou, L. and Götz, M., Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain, Physiol. Rev., 2014, vol. 94, no. 3, pp. 709–737.

    Article  CAS  PubMed  Google Scholar 

  42. Doetsch, F., Caillé, I., Lim, D.A., et al., Subventricular zone astrocytes are neural stem cells in the adult mammalian brain, Cell, 1999, vol. 97, pp. 703–716.

    Article  CAS  PubMed  Google Scholar 

  43. Doetsch, F., The glial identity of neural stem cells, Nat. Neurosci., 2003, vol. 6, no. 11, pp. 1127–1134.

    Article  CAS  PubMed  Google Scholar 

  44. Dyakonova, V.E., Origin and evolution of the nervous system: new data from comparative whole genome studies of multicellular animals, Russ. J. Dev. Biol., 2022, vol. 53, no. 1, pp. 55–64.

    Article  CAS  Google Scholar 

  45. Duong, T.A.D., Hoshiba, Y., Saito, K., et al., FGF signaling directs the cell fate switch from neurons to astrocytes in the developing mouse cerebral cortex, Neuroscience, 2019, vol. 39, no. 31, pp. 6081–6094.

    Article  CAS  Google Scholar 

  46. Eilam, R., Aharoni, R., Arnon, R., et al., Astrocyte morphology is confined by cortical functional boundaries in mammals ranging from mice to human, Elife, 2016, vol. 5, article ID e15915.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Falcone, C., Wolf-Ochoa, M., Amina, S., et al., Cortical interlaminar astrocytes across the therian mammal radiation, J. Comp. Neurol., 2019, vol. 527, no. 10, pp. 1654–1674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Farhy-Tselnicker, I. and Allen, N.J., Astrocytes, neurons, synapses: a tripartite view on cortical circuit development, Neural Dev., 2018, vol. 13, no. 1, p. 7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Flitsch, L.J. and Brüstle, O., Evolving principles underlying neural lineage conversion and their relevance for biomedical translation, F1000Research, 2019, vol. 8, p. F1000, Faculty Rev-1548.

  50. Forsberg, D. and Herlenius, E., Astrocyte networks modulate respiration-sniffing glue, Respir. Physiol. Neurobiol., 2019, vol. 265, pp. 3–8.

    Article  PubMed  Google Scholar 

  51. Freeman, M.R., Specification and morphogenesis of astrocytes, Science, 2010, vol. 330, no. 6005, pp. 774–778.https://doi.org/10.1126/science.1190928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Furness, D.N., Dehnes, Y., Akhtar, A.Q., et al., A quantitative assessment of glutamate uptake into hippocampal synaptic terminals and astrocytes: new insights into a neuronal role for excitatory amino acid transporter 2 (EAAT2), Neuroscience, 2008, vol. 157, no. 1, pp. 80–94.

    Article  CAS  PubMed  Google Scholar 

  53. Gao, V., Suzuki, A., Magistretti, P.J., et al., Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation, Proc. Natl. Acad. Sci. U. S. A., 2016, vol. 113, pp. 8526–8531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gao, H., A, L., Huang, X., et al., Müller glia-mediated retinal regeneration, Mol. Neurobiol., 2021, vol. 58, no. 5, pp. 2342–2361.

    Article  CAS  PubMed  Google Scholar 

  55. Garcia-Marques, J. and Lopez-Mascaraque, L., Clonal identity determines astrocyte cortical heterogeneity, Cereb. Cortex, 2013, vol. 23, pp. 1463–1472.

    Article  PubMed  Google Scholar 

  56. Garcia, A.D.R., Doan, N.B., Imura, T., et al., GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain, Nat. Neurosci., 2004, vol. 7, no. 11, pp. 1233–1241.

    Article  CAS  PubMed  Google Scholar 

  57. Gascon, S., Masserdotti, G., Russo, G.L., et al., Direct neuronal reprogramming: achievements, hurdles, and new roads to success, Cell Stem Cell, 2017, vol. 21, pp. 18–34.

    Article  CAS  PubMed  Google Scholar 

  58. Ge, W.P. and Jia, J.M., Local production of astrocytes in the cerebral cortex, Neuroscience, 2016, vol. 323, pp. 3–9.

    Article  CAS  PubMed  Google Scholar 

  59. Ge, L.J., Yang, F.H., Li, W., et al., In vivo neuroregeneration to treat ischemic stroke through neuroD1 AAV-based gene therapy in adult non-human primates, Front. Cell. Dev. Biol., 2020, vol. 8, article ID 590008.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Goldman, S.A., Glial evolution as a determinant of human behavior and its disorders, Ann. N.Y. Acad. Sci., 2020, vol. 1471, no. 1, pp. 72–85.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gomazkov, O.A., Astrocytes as the elements of the regulation of higher brain functions, Neurochem. J., 2019, vol. 36, no. 4, pp. 313–319.

    Article  Google Scholar 

  62. Goss, J.R., O’Malley, M.E., Zou, L., et al., Astrocytes are the major source of nerve growth factor upregulation following traumatic brain injury in the rat, Exp. Neurol., 1998, vol. 149, no. 2, pp. 301–309.

    Article  CAS  PubMed  Google Scholar 

  63. Götz, M. and Bocchi, R., Neuronal replacement: concepts, achievements, and call for caution, Curr. Opin. Neurobiol., 2021, vol. 69, pp. 185–192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Griffiths, B.B., Bhutani, A., and Stary, C.M., Adult neurogenesis from reprogrammed astrocytes, Neural. Regener. Res., 2020, vol. 15, no. 6, pp. 973–979.

    Article  Google Scholar 

  65. Guo, Z., Zhang, L., Wu, Z., et al., In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model, Cell Stem Cell, 2014, vol. 14, no. 2, pp. 188–202.

    Article  CAS  PubMed  Google Scholar 

  66. Halassa, M.M., Fellin, T., Takano, H., et al., Synaptic islands defined by the territory of a single astrocyte, J. Neurosci., 2007, vol. 27, no. 24, pp. 6473–6477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Han, X., Chen, M., Wang, F., et al., Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice, Cell Stem Cell, 2013, vol. 12, no. 3, pp. 342–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hatada, I., Namihira, M., Morita, S., et al., Astrocyte-specific genes are generally demethylated in neural precursor cells prior to astrocytic differentiation, PLoS One, 2008, vol. 3, no. 9, article ID e3189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. He, F., Ge, W., Martinowich, K., et al., A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis, Nat. Neurosci., 2005, vol. 8, no. 5, pp. 616–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Heins, N., Malatesta, P., Cecconi, F., et al., Glial cells generate neurons: the role of the transcription factor Pax6, Nat. Neurosci., 2002, vol. 5, pp. 308–315.

    Article  CAS  PubMed  Google Scholar 

  71. Hirabayashi, Y., Suzki, N., Tsuboi, M., et al., Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition, Neuron, 2009, vol. 63, no. 5, pp. 600–613.

    Article  CAS  PubMed  Google Scholar 

  72. Hochstim, C., Deneen, B., Lukaszewicz, A., et al., Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code, Cell, 2008, vol. 133, pp. 510–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hodge, R.D., Bakken, T.E., Miller, J.A., et al., Conserved cell types with divergent features in human versus mouse cortex, Nature, 2019, vol. 573, no. 7772, pp. 61–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Holst, C.B., Brøchner, C.B., Vitting-Seerup, K., et al., Astrogliogenesis in human fetal brain: complex spatiotemporal immunoreactivity patterns of GFAP, S100, AQP4 and YKL-40, J. Anat., 2019, vol. 235, no. 3, pp. 590–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Houades, V., Koulakoff, A., Ezan, P., et al., Gap junction-mediated astrocytic networks in the mouse barrel cortex, J. Neurosci., 2008, vol. 28, no. 20, pp. 5207–5217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hu, H., Miao, Y.R., Jia, L.H., et al., Animal TFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors, Nucleic Acids Res., 2019, vol. 47, pp. D33–D38.

    Article  CAS  PubMed  Google Scholar 

  77. Iadecola, C., The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease, Neuron, 2017, vol. 96, no. 1, pp. 17–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ishunina, T.A., Bogolepova, I.N., and Svaab, D.F., Morphofunctional changes and compensatory mechanisms in the human brain during aging and Alzheimer’s disease, Zh. Anat. Gistopatol., 2020, vol. 9, no. 1, pp. 77–85.

    Google Scholar 

  79. John, G.R., Lee, S.C., and Brosnan, C.F., Cytokines: powerful regulators of glial cell activation, Neuroscientist, 2003, vol. 9, pp. 10–22.

    Article  CAS  PubMed  Google Scholar 

  80. Kang, P., Lee, H.K., Glasgow, S.M., et al., Sox9 and NFIA coordinate a transcriptional regulatory cascade during the initiation of gliogenesis, Neuron, 2012, vol. 74, no. 1, pp. 79–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kanski, R., van Strien, M.E., van Tijn, P., et al., A star is born: new insights into the mechanism of astrogenesis, Cell Mol. Life Sci., 2014, vol. 71, no. 3, pp. 433–447.

    Article  CAS  PubMed  Google Scholar 

  82. Kempf, J., Knelles, K., Hersbach, B.A., et al., Heterogeneity of neurons reprogrammed from spinal cord astrocytes by the proneural factors Ascl1 and Neurogenin2, Cell. Rep., 2021, vol. 36, no. 3, article ID 109409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Khakh, B.S. and Sofroniew, M.V., Diversity of astrocyte functions and phenotypes in neural circuits, Nat. Neurosci., 2015, vol. 18, no. 7, pp. 942–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Khakh, B.S. and Deneen, B., The emerging nature of astrocyte diversity, Annu. Rev. Neurosci., 2019, vol. 42, pp. 187–207.

    Article  CAS  PubMed  Google Scholar 

  85. Kolomeets, N.S., The role of astrocytes in disorders of glutamatergic neurotransmission in schizophrenia, Zh. Nevrol. Psikhiatr. im. S.S. Korsakova, 2015, vol. 115, no. 1, pp. 110–117.

    Article  CAS  PubMed  Google Scholar 

  86. Kriegstein, A. and Alvarez-Buylla, A., The glial nature of embryonic and adult neural stem cells, Annu. Rev. Neurosci., 2009, vol. 32, pp. 149–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kugler, E.C., Greenwood, J., and MacDonald, R.B., The “neuro-glial-vascular” unit: the role of glia in neurovascular unit formation and dysfunction, Front. Cell. Dev. Biol., 2021, vol. 9, article ID 732820.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lee, J.H., Kim, J.Y., Noh, S., et al., Astrocytes phagocytose adult hippocampal synapses for circuit homeostasis, Nature, 2021, vol. 590, no. 7847, pp. 612–617.

    Article  CAS  PubMed  Google Scholar 

  89. Li, H. and Chen, G., In vivo reprogramming for CNS repair: regenerating neurons from endogenous glial cells, Neuron, 2016, vol. 91, pp. 728–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, L., Lundkvist, A., Andersson, D., et al., Protective role of reactive astrocytes in brain ischemia, J. Cereb. Blood. Flow. Metab., 2008, vol. 28, no. 3, pp. 468–481.

    Article  PubMed  CAS  Google Scholar 

  91. Li, J., Pan, L., Pembroke, W.G., et al., Conservation and divergence of vulnerability and responses to stressors between human and mouse astrocytes, Nat. Commun., 2021, vol. 12, no. 1, p. 3958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Limbad, C., Oron, T.R., Alimirah, F., et al., Astrocyte senescence promotes glutamate toxicity in cortical neurons, PLoS One, 2020, vol. 15, no. 1, article ID e0227887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu, Y., Miao, Q., Yuan, J., et al., Ascl1 converts dorsal midbrain astrocytes into functional neurons in vivo, J. Neurosci., 2015, vol. 35, no. 25, pp. 9336–9355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, M.H., Li, W., Zheng, J.J., et al., Differential neuronal reprogramming induced by NeuroD1 from astrocytes in grey matter versus white matter, Neural Regener. Res., 2020, vol. 15, no. 2, pp. 342–351.

    Article  Google Scholar 

  95. Llorens-Bobadilla, E., Zhao, S., Baser, A., et al., Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury, Cell Stem Cell, 2015, vol. 17, pp. 329–340.

    Article  CAS  PubMed  Google Scholar 

  96. Loprinzi, P.D., The role of astrocytes on the effects of exercise on episodic memory function, Physiol. Int., 2019, vol. 106, no. 1, pp. 21–28.

    Article  CAS  PubMed  Google Scholar 

  97. Lozzi, B., Huang, T.W., Sardar, D., et al., Regionally distinct astrocytes display unique transcription factor profiles in the adult brain, Front. Neurosci., 2020, vol. 14, no. 61.

  98. Ma, N.X., Yin, J.C., and Chen, G., Transcriptome analysis of small molecule-mediated astrocyte-to-neuron reprogramming, Front. Cell Dev. Biol., 2019, vol. 7, p. 82.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ma, Y., Xie, H., Du, X., et al., In vivo chemical reprogramming of astrocytes into neurons, Cell Discov., 2021, vol. 7, no. 1, p. 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Magavi, S., Friedmann, D., Banks, G., et al., Coincident generation of pyramidal neurons and protoplasmic astrocytes in neocortical columns, J. Neurosci., 2012, vol. 32, no. 14, pp. 4762–4772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Magnusson, J.P., Göritz, C., Tatarishvili, J., et al., A latent neurogenic program in astrocytes regulated by notch signaling in the mouse, Science, 2014, vol. 346, pp. 237–241.

    Article  CAS  PubMed  Google Scholar 

  102. Magnusson, J.P. and Frisén, J., Stars from the darkest night: unlocking the neurogenic potential of astrocytes in different brain regions, Development, 2016, vol. 143, no. 7, pp. 1075–1086.

    Article  CAS  PubMed  Google Scholar 

  103. Magnusson, J.P., Zamboni, M., Santopolo, G., et al., Activation of a neural stem cell transcriptional program in parenchymal astrocytes, eLife, 2020, vol. 9, article ID e59733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. McConnell, S.K., The control of neuronal identity in the developing cerebral cortex, Curr. Opin. Neurobiol., 1992, vol. 2, pp. 23–27.

    Article  CAS  PubMed  Google Scholar 

  105. Merkle, F.T., Tramontin, A.D., Garcia-Verdugo, J.M., et al., Radial glia give rise to adult neural stem cells in the subventricular zone, Proc. Natl. Acad. Sci. U. S. A., 2004, vol. 101, pp. 17528–17532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Miller, F.D. and Gauthier, A.S., Timing is everything: making neurons versus glia in the developing cortex, Neuron, 2007, vol. 54, no. 3, pp. 357–369.

    Article  CAS  PubMed  Google Scholar 

  107. Miller, S.J., Philips, T., Kim, N., et al., Molecularly defined cortical astroglia subpopulation modulates neurons via secretion of norrin, Nat. Neurosci., 2019, vol. 22, no. 5, pp. 741–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Minge, D., Domingos, C., Unichenko, P., et al., Heterogeneity and development of fine astrocyte morphology captured by diffraction-limited microscopy, Front. Cell. Neurosci., 2021, vol. 15, article ID 669280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Molofsky, A.V. and Deneen, B., Astrocyte development: a guide for the perplexed, Glia, 2015, vol. 63, no. 8, pp. 1320–1329.

    Article  PubMed  Google Scholar 

  110. Molofsky, A.V., Glasgow, S.M., Chaboub, L.S., et al., Expression profiling of Aldh1l1-precursors in the developing spinal cord reveals glial lineage-specific genes and direct Sox9–Nfe2l1 interactions, Glia, 2013, vol. 61, pp. 1518–1532.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Morel, L., Men, Y., Chiang, M.S.R., et al., Intracortical astrocyte subpopulations defined by astrocyte reporter mice in the adult brain, Glia, 2019, vol. 67, no. 1, pp. 171–181.

    Article  PubMed  Google Scholar 

  112. Mori, T., Buffo, A., and Götz, M., The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis, Curr. Top. Dev. Biol., 2005, vol. 69, pp. 67–99.

    Article  CAS  PubMed  Google Scholar 

  113. Muroyama, Y., Fujiwara, Y., Orkin, S.H., et al., Specification of astrocytes by bHLH protein SCL in a restricted region of the neural tube, Nature, 2005, vol. 438, pp. 360–363.

    Article  CAS  PubMed  Google Scholar 

  114. Namihira, M., Kohyama, J., Semi, K., et al., Committed neuronal precursors confer astrocytic potential on residual neural precursor cells, Dev. Cell, 2009, vol. 16, no. 2, pp. 245–255.

    Article  CAS  PubMed  Google Scholar 

  115. Niu, W., Zang, T., Zou, Y., et al., In vivo reprogramming of astrocytes to neuroblasts in the adult brain, Nat. Cell Biol., 2013, vol. 15, pp. 1164–1175.

    Article  CAS  PubMed  Google Scholar 

  116. Noctor, S.C., Martínez-Cerdeño, V., Ivic, L., et al., Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases, Nat. Neurosci., 2004, vol. 7, no. 2, pp. 136–144.

    Article  CAS  PubMed  Google Scholar 

  117. Nosova, O.I., Sufieva, D.A., and Korzhevskii, D.E., The use of confocal microscopy and software methods of 2d and 3d analysis to study the structural organization of astrocytes, Tsitologiya, 2021, vol. 63, no. 1, pp. 80–87.

    Google Scholar 

  118. Oberheim, N.A., Wang, X., Goldman, S., et al., Astrocytic complexity distinguishes the human brain, Trends Neurosci., 2006, vol. 29, pp. 547–553.

    Article  CAS  PubMed  Google Scholar 

  119. Oberheim, N.A., Takano, T., Han, X., et al., Uniquely hominid features of adult human astrocytes, J. Neurosci., 2009, vol. 29, no. 10, pp. 3276–3287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ofenbauer, A. and Tursun, B., Strategies for in vivo reprogramming, Curr. Opin. Cell. Biol., 2019, vol. 61, pp. 9–15.

    Article  CAS  PubMed  Google Scholar 

  121. Ohab, J.J., Fleming, S., Armin, BleschA., et al., A neurovascular niche for neurogenesis after stroke, J. Neurosci., 2006, vol. 26, no. 50, pp. 13007–13016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Papouin, T., Dunphy, J., Tolman, M., et al., Astrocytic control of synaptic function, Philos. Trans. R. Soc., B, 2017, vol. 372, no. 1715, article ID 20160154.

  123. Parnavelas, J.G., Glial cell lineages in the rat cerebral cortex, Exp. Neurol., 1999, vol. 156, pp. 418–429.

    Article  CAS  PubMed  Google Scholar 

  124. Pavlou, M.A.S., Grandbarbe, L., Buckley, N.J., et al., Transcriptional and epigenetic mechanisms underlying astrocyte identity, Prog. Neurobiol., 2019, vol. 174, pp. 36–52.

    Article  CAS  PubMed  Google Scholar 

  125. Pelvig, D.P., Pakkenberg, H., Stark, A.K., et al., Neocortical glial cell numbers in human brains, Neurobiol. Aging, 2008, no. 11, pp. 1754–1762.

  126. Perea, G., Navarrete, M., and Araque, A., Tripartite synapses: astrocytes process and control synaptic information, Trends Neurosci., 2009, vol. 32, no. 8, pp. 421–431.

    Article  CAS  PubMed  Google Scholar 

  127. Perez-Catalan, N.A., Doe, C.Q., and Ackerman, S.D., The role of astrocyte-mediated plasticity in neural circuit development and function, Neural Dev., 2021, vol. 16, no. 1, p. 1.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Qian, X., Shen, Q., Goderie, S.K., et al., Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells, Neuron, 2000, vol. 28, pp. 69–80.

    Article  CAS  PubMed  Google Scholar 

  129. Qian, H., Kang, X., Hu, J., et al., Reversing a model of Parkinson’s disease with in situ converted nigral neurons, Nature, 2020, vol. 582, pp. 550–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rahman, A.A., Amruta, N., Pinteaux, E., et al., Neurogenesis after stroke: a therapeutic perspective, Transl. Stroke Res., 2021, vol. 12, no. 1, pp. 1–14.

    Article  CAS  PubMed  Google Scholar 

  131. Rakic, P.J., Mode of cell migration to the superficial layers of fetal monkey neocortex, Comp. Neurol., 1972, vol. 145, no. 1, pp. 61–83.

    Article  CAS  Google Scholar 

  132. Raponi, E., Agenes, F., Delphin, C., et al., S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage, Glia, 2007, vol. 55, no. 2, pp. 165–177.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Raposo, A.A.S.F., Vasconcelos, F.F., and Drechsel, D., Ascl-1 coordinately regulates gene expression and the chromatin landscape during neurogenesis, Cell. Rep., 2015, vol. 10, no. 9, pp. 1544–1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rivetti di Val Cervo, P., Romanov, R.A., Spigolon, G., et al., Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease mode, Nat. Biotechnol., 2017, vol. 35, pp. 444–452.

    Article  PubMed  CAS  Google Scholar 

  135. Robel, S., Buckingham, S.C., Boni, J.L., et al., Reactive astrogliosis causes the development of spontaneous seizures, J. Neurosci., 2015, vol. 35, no. 8, pp. 3330–3345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Russo, G.L., Sonsalla, G., Natarajan, P., et al., Crispr-mediated induction of neuron-enriched mitochondrial proteins boosts direct glia-to-neuron conversion, Cell Stem Cell, 2021, vol. 28, no. 3, pp. 524–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Santello, M., Toni, N., and Volterra, A., Astrocyte function from information processing to cognition and cognitive impairment, Nat. Neurosci., 2019, vol. 22, no. 2, pp. 154–166.

    Article  CAS  PubMed  Google Scholar 

  138. Schmechel, D.E. and Rakic, P., A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes, Anat. Embryol., 1979, vol. 156, no. 2, pp. 115–152.

    Article  CAS  Google Scholar 

  139. Shan, L., Zhang, T., Fan, K., et al., Astrocyte-neuron signaling in synaptogenesis, Front. Cell Dev. Biol., 2021, vol. 9, article ID 680301.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sharif, N., Calzolari, F., and Berninger, B., Direct in vitro reprogramming of astrocytes into induced neurons, Methods Mol. Biol., 2021, vol. 2352, pp. 13–29.

    Article  PubMed  Google Scholar 

  141. Shen, Q., Wang, Y., Dimos, J.T., et al., The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells, Nat. Neurosci., 2006, vol. 9, pp. 743–751.

    Article  CAS  PubMed  Google Scholar 

  142. Shen, Q., Wang, Y., Kokovay, E., et al., Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell–cell interactions, Cell Stem Cell, 2008, vol. 3, pp. 289–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Shimada, I.S., LeComte, M.D., Granger, J.C., et al., Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke, J. Neurosci., 2012, vol. 32, no. 23, pp. 7926–7940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shoneye, T., Orrego, A.T., Jarvis, R., et al., Differential proliferation and maturation of subcortical astrocytes during postnatal development, Front. Neurosci., 2020, vol. 14, p. 435.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Shusharina, N.N., Patrushev, M.V., Silina, E.V., et al., Expression of neurotransmitter transporter genes in astrocytes of different parts of the brain in the experiment, Zh. Nevrol. Psikhiatr. im. S.S. Korsakova, 2018, vol. 118, no. 6, pp. 58–64.

    Article  CAS  PubMed  Google Scholar 

  146. Shvalev, V.N., Sosunov, A.A., and Chelyshev, Yu.A., Astrocytes and synapse plasticity. Part 1. Synaptogenic molecules, Nevrol. Vestn., 2018, vol. 50, no. 2, pp. 55–60.

    Google Scholar 

  147. Sim, F.J., Windrem, M.S., and Goldman, S.A., Fate determination of adult human glial progenitor cells, Neuron. Glia Biol., 2009, vol. 5, nos. 3–4, pp. 45–55.

    Article  PubMed  Google Scholar 

  148. Sirko, S., Behrendt, G., Johansson, P.A., et al., Reactive glia in the injured brain acquire stem cell properties in response to sonic hedgehog, Cell Stem Cell, 2013, vol. 12, pp. 426–439.

    Article  CAS  PubMed  Google Scholar 

  149. Sloan, S.A. and Barres, B.A., Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders, Curr. Opin. Neurobiol., 2014, vol. 27, pp. 75–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sofroniew, M.V. and Vinters, H.V., Astrocytes: biology and pathology, Acta Neuropathol., 2010, vol. 119, no. 1, pp. 7–35.

    Article  PubMed  Google Scholar 

  151. Sofroniew, M.V., Astrocyte reactivity: subtypes, states, and functions in CNS innate immunity, Trends Immunol., 2020, vol. 41, no. 9, pp. 758–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Sosunov, A.A., Wu, X., Tsankov, N.M., et al., Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain, J. Neurosci., 2014, vol. 34, no. 6, pp. 2285–2298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Stackhouse, T.L. and Mishra, A., Neurovascular coupling in development and disease: focus on astrocytes, Front. Cell Dev. Biol., 2021, vol. 9, article ID 702832.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Stogsdill, J.A., Ramirez, J., Liu, D., et al., Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis, Nature, 2017, vol. 551, no. 7679, pp. 192–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sun, W., Cornwell, A., Li, J., et al., SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions, J. Neurosci., 2017a, vol. 37, no. 17, pp. 4493–4507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sun, X., Hu, X., Wang, D., et al., Establishment and characterization of primary astrocyte culture from adult mouse brain, Brain Res. Bull., 2017b, vol. 132, pp. 10–19.

    Article  CAS  PubMed  Google Scholar 

  157. Susarla, B.T., Villapol., S., Yi, J.H., et al., Temporal patterns of cortical proliferation of glial cell populations after traumatic brain injury in mice, ASN Neuro, 2014, vol. 6, no. 3, pp. 159–170.

    Article  PubMed  CAS  Google Scholar 

  158. Tabata, H., Diverse subtypes of astrocytes and their development during corticogenesis, Front. Neurosci., 2015, vol. 9, p. 114.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Tang, F., Lane, S., Korsak, A., et al., Lactate-mediated glia-neuronal signalling in the mammalian brain, Nat. Commun., 2014, vol. 5, p. 3284.

    CAS  PubMed  Google Scholar 

  160. Tavazoie, M., Van der Veken, L., Silva-Vargas, V., et al., A specialized vascular niche for adult neural stem cells, Cell Stem Cell, 2008, vol. 3, pp. 288–379.

    Article  CAS  Google Scholar 

  161. Torper, O., Pfisterer, U., Wolf, D.A., et al., Generation of induced neurons via direct conversion in vivo, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, pp. 7038–7043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Torres, A., Extracellular Ca2+ acts as a mediator of communication from neurons to glia, Sci. Signal., 2012, vol. 5, no. 208, p. 208.

    Article  CAS  Google Scholar 

  163. Tsyba, D.L., Kirik, O.V., Kolpakova, M.E., et al., Peculiarities of the expression of nestin and glial fibrillar acidic protein at the boundary of the focus of ischemic brain damage in shr rats, Klet. Tekhnol. Biol. Med., 2020, no. 2, pp. 118–124.

  164. Verkhratsky, A., Astroglial calcium signaling in aging and Alzheimer’s disease, Cold Spring Harb. Perspect. Biol., 2019, vol. 11, no. 7, article ID a035188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Verkhratsky, A. and Nedergaard, M., Physiology of astroglia, Physiol. Rev., 2018, vol. 98, pp. 239–389.

    Article  CAS  PubMed  Google Scholar 

  166. Vierbuchen, T., Ostermeier, A., Pang, Z.P., et al., Direct conversion of fibroblasts to functional neurons by defined factors, Nature, 2010, vol. 463, pp. 1035–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Vignoli, B., Sansevero, G., Sasi, M., et al., Astrocytic microdomains from mouse cortex gain molecular control over long-term information storage and memory retention, Commun. Biol., 2021, vol. 4, no. 1, p. 1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Voigt, T., Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes, J. Comp. Neurol., 1989, vol. 289, no. 1, pp. 74–88.

    Article  CAS  PubMed  Google Scholar 

  169. Wade, J.J., Mcdaid, L.J., Harkin, J., et al., Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach, PLoS One, 2011, vol. 6, article ID e29445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Walrave, L., Vinken, M., Leybaert, L., et al., Astrocytic connexin43 channels as candidate targets in epilepsy treatment, Biomolecules, 2020, vol. 10, no. 11, p. 1578.

    Article  CAS  PubMed Central  Google Scholar 

  171. Xiang, Z., Xu, L., Liu, M., et al., Lineage tracing of direct astrocyte-to-neuron conversion in the mouse cortex, Neural. Regener. Res., 2021, vol. 16, pp. 750–756.

    Article  Google Scholar 

  172. Yang, H., Liu, C., Fan, H., et al., Sonic hedgehog effectively improves Oct4 mediated reprogramming of astrocytes into neural stem cells, Mol. Ther., 2019, vol. 27, no. 8 P, pp. 1467–1482.

  173. Yin, J.C., Zhang, L., Ma, N.X., et al., Chemical conversion of human fetal astrocytes into neurons through modulation of multiple signaling pathways, Stem. Cell. Rep., 2019, vol. 12, no. 3, pp. 488–501.

    Article  CAS  Google Scholar 

  174. Zamanian, J.L., Xu, L., Foo, L.C., et al., Genomic analysis of reactive astrogliosis, J. Neurosci., 2012, vol. 32, no. 18, pp. 6391–6410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zamboni, M., Llorens-Bobadilla, E., Magnusson, J.P., et al., Widespread neurogenic potential of neocortical astrocytes is induced by injury, Cell Stem Cell, 2020, vol. 27, no. 4, pp. 605–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zhang, Y., Sloan, S.A., Clarke, L.A., et al., Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse, Neuron, 2016, vol. 89, no. 1, pp. 37–53.

    Article  CAS  PubMed  Google Scholar 

  177. Zhang, K., Förster, R., He, W., et al., Fear learning induces α7-nicotinic acetylcholine receptor-mediated astrocytic responsiveness that is required for memory persistence, Nat. Neurosci., 2021, vol. 24, no. 12, pp. 1686–1698.

    Article  CAS  PubMed  Google Scholar 

  178. Zhou, B., Zuo, Y.X., and Jiang, R.T., Astrocyte morphology: diversity, plasticity, and role in neurological diseases, CNS Neurosci. Ther., 2019, vol. 25, no. 6, pp. 665–673.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Zhou, H., Su, J., Hu, X., et al., Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice, Cell, 2020, vol. 181, pp. 590–603.

    Article  CAS  PubMed  Google Scholar 

  180. Zhuo, L., Theis, M., Alvarez-Maya, I., et al., hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo, Genesis, 2001, vol. 31, no. 2, pp. 85–94.

    Article  CAS  PubMed  Google Scholar 

  181. Zorec, R., Araque, A., Carmignoto, G., et al., Astroglial excitability and gliotransmission: an appraisal of Ca2+ as a signalling route, ASN Neuro, 2012, vol. 4, pp. 103–119.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Sci. in Biological Sciences Professor V.V. Terskih, for creative discussion of the article, critical comments, and important recommendations.

Funding

The work was carried out within the framework of the State Assignment of the Institute of Developmental Biology, Russian Academy of Sciences, no. 0088-2021-0017.

Author information

Authors and Affiliations

Authors

Contributions

The authors made equal contributions to the preparation of the article.

Corresponding authors

Correspondence to M. A. Aleksandrova or K. K. Sukhinich.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving human participants or laboratory animals as experimental models performed by the authors.

Additional information

Translated by A. Ermakov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrova, M.A., Sukhinich, K.K. Astrocytes of the Brain: Retinue Plays the King. Russ J Dev Biol 53, 252–271 (2022). https://doi.org/10.1134/S1062360422040026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360422040026

Keywords:

Navigation