Skip to main content
Log in

Production of Stable Cell Lines on the Basis of the Cultured RPMI 8866 B-Cells with Constant and Inducible Expression of the Human Immunodeficiency Virus Tat Protein

  • MECHANISMS OF CELL PROLIFERATION AND DIFFERENTIATION
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Highly-efficient antiretroviral therapy allows controlling human immunodeficiency virus (HIV) and preventing the development of immunodeficiency. However, the patients who receive therapy may develop different complications, including B-cell lymphomas. One of oncogenesis’ mechanisms in HIV-infected patients is associated with the activity of the viral Tat protein, which is able to penetrate into B-cells. In order to study the effect of the Tat protein on B-cells, a report is given on the production and characterization of the cell lines based on the cultured RPMI 8866 B-cell line demonstrating constant and inducible expression of the Tat protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Altavilla, G., Trabanelli, C., Merlin, M., et al., Morphological, histochemical, immunohistochemical, and ultrastructural characterization of tumors and dysplastic and non-neoplastic lesions arising in BK virus/tat transgenic mice, Am. J. Pathol., 1999, vol. 154, no. 4, pp. 1231–1244.

    Article  CAS  Google Scholar 

  2. Altavilla, G., Caputo, C., Trabanelli, C., et al., Prevalence of liver tumours in HIV-1 tat-transgenic mice treated with urethane, Eur. J. Cancer, 2004, vol. 40, no. 2, pp. 275–283.

    Article  CAS  Google Scholar 

  3. Brégnard, C., Benkirane, M., and Laguette, N., DNA damage repair machinery and hiv escape from innate immune sensing, Front. Microbiol., 2014, vol. 5, p. 176.

    PubMed  PubMed Central  Google Scholar 

  4. Carvallo, Loreto, Lopez, et al., HIV–Tat regulates macrophage gene expression in the context of neuroAIDS, PLoS One, 2017, vol. 12, no. 6.

  5. Chipitsyna, G., Dorota, S., Siddiqui, K., et al., HIV-1 Tat increases cell survival in response to cisplatin by stimulating Rad51 gene expression, Oncogene, 2004, vol. 23, no. 15, pp. 2664–2671.

    Article  CAS  Google Scholar 

  6. Corallini, A., Altavilla, G., Pozzi, L., et al., Systemic expression of HIV-1 Tat gene in transgenic mice induces endothelial proliferation and tumors of different histotypes, Cancer Res., 1993, vol. 53, no. 22, pp. 5569–5575.

    CAS  PubMed  Google Scholar 

  7. Debaisieux, S., Rayne, F., Yezid, H., et al., The ins and outs of HIV-1 Tat, Traffic, 1993, vol. 13, no. 3, pp. 355–363.

    Article  Google Scholar 

  8. Germini, D., Tsfasman, T., Klibi, M., et al., HIV Tat induces a prolonged myc relocalization next to IGH in circulating B-cells, Leukemia, 2017.

  9. Gladkikh, A., Potashnikova, D., Korneva, E., et al., Cyclin D1 expression in B-cell lymphomas, Exp. Hematol., 2010, vol. 38, no. 11, pp. 1047–1057.

    Article  CAS  Google Scholar 

  10. Hernández-Ramirez, R., Shiels, M., Dubrow, R., et al., Cancer risk in HIV-infected people in the USA from 1996 to 2012: a population-based, registry-linkage study, Lancet. HIV, 2017, vol. 4, no. 11, pp. 495–504.

    Article  Google Scholar 

  11. Kowarz, E., Löscher, D., and Marschalek, R., Optimized sleeping beauty transposons rapidly generate stable transgenic cell lines, Biotechnol. J., 2015, vol. 10, no. 4, pp. 647–653.

    Article  CAS  Google Scholar 

  12. Kundu, R., Sangiorgi, L., Wu, Y., et al., Expression of the human immunodeficiency virus-tat gene in lymphoid tissues of transgenic mice is associated with B-cell lymphoma, Blood, 1999, vol. 94, no. 1, pp. 275–282.

    CAS  PubMed  Google Scholar 

  13. Kurnaeva, M., Sheval, E., Musinova, Y., et al., Tat basic domain: a ‘Swiss army knife’ of HIV-1 Tat?, Rev. Med. Virol., 2019.

  14. Lefevre, E.A., Krzysiek, R., Löret, E.P., et al., Cutting edge: HIV-1 Tat protein differentially modulates the B cell response of naive, memory, and germinal center B cells, J. Immunol., 1999, vol. 163, no. 3, pp. 1119–1122.

    CAS  PubMed  Google Scholar 

  15. Marban, C., Su, T., Ferrari, R., et al., Genome-wide binding map of the HIV-1 Tat protein to the human genome, PLoS One, 2011, vol. 6, p. 26894.

    Article  Google Scholar 

  16. Musinova, Y.R. and Sheval, E.V., The accumulation of the basic domain of HIV-1 Tat protein in the nuclei and the nucleoli is different from the accumulation of full-length Tat proteins, Biopolym. Cell, 2015, vol. 31, no. 2, pp. 154–158.

    Google Scholar 

  17. Musinova, Y.R., Sheval, E.V., Dib, C., et al., Functional roles of HIV-1 Tat protein in the nucleus, Cell. Mol. Life Sci., CMLS, 2016, vol. 73, no. 3, pp. 589–601.

    Article  CAS  Google Scholar 

  18. Reeder, J.E., Kwak, Y.T., McNamara, R.P., et al., HIV Tat controls RNA polymerase II and the epigenetic landscape to transcriptionally reprogram target immune cells, Elife, 2015, vol. 4.

  19. Sall, F.B., El Amine, R., Markozashvili, D., et al., HIV-1 Tat protein induces aberrant activation of AICDA in human B-lymphocytes from peripheral blood, J. Cell Physiol., 2019.

  20. Sun, Y., Huang, Y.C., Xu, Q.Z., et al., HIV-1 Tat depresses DNA-PK(CS) expression and DNA repair, and sensitizes cells to ionizing radiation, Int. J. Radiat. Oncol. Biol. Phys., 2006, vol. 65, pp. 842–850.

    Article  CAS  Google Scholar 

  21. Vandesompele, J., De Preter, K., Pattyn, F., et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol., 2002, vol. 3.

  22. Vogel, J., Hinrichs, S.H., Napolitano, L.A., et al., Liver cancer in transgenic mice carrying the human immunodeficiency virus tat gene, Cancer Res., 1991, vol. 51, pp. 6686–6690.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Eric Kowarz for kindly providing the pSBbi-GP and pSBtet-GP plasmids (Addgene рlasmids #60511 and #60495) and to Zsuzsanna Izsvak for kindly providing the SB100X plasmid (Addgene рlasmid #34879).

Funding

The work was supported by the Russian Science Foundation (grant no. 17-75-20199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. R. Musinova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interests. No experimentation involving animals was part of the present work.

Additional information

Translated by E. Martynova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorbacheva, M.A., Tikhomirova, M.A., Potashnikova, D.M. et al. Production of Stable Cell Lines on the Basis of the Cultured RPMI 8866 B-Cells with Constant and Inducible Expression of the Human Immunodeficiency Virus Tat Protein. Russ J Dev Biol 50, 275–280 (2019). https://doi.org/10.1134/S1062360419050060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360419050060

Keywords:

Navigation