Skip to main content
Log in

Glutamine Synthetase-Containing Cells of the Dorsal Root Ganglion at Different Stages of Rat Ontogeny

  • Morphogenesis
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

In the present study, formation, location, and morphological features of glutamine synthetaseimmunopositive cells of the dorsal root ganglion (DRG) at different stages of prenatal and postnatal development of the rat was examined. It was demonstrated that small differentiating satellite cells containing glutamine synthetase were observed in the DRG close to sensory neurons on embryonic day 18. On embryonic day 19, the forming immunopositive glial cells were located around developing neurons of the DRG in accordance with topography, which is observed in newborn and adult animals. The averaged number of satellite cells per sensory neuron in mature and aging rats was calculated and it was found that this index did not change during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D’Amelio, F., Eng, L.F., and Gibbs, M.A., Glutamine synthetase immunoreactivity is present in oligodendroglia of various regions of the central nervous system, Glia, 1990, vol. 3, no. 5, pp. 335–341.

    Article  PubMed  Google Scholar 

  • Arkhipova, S.S., Raginov, I.S., Mukhitov, A.R., and Chelyshev, Yu.A., Satellite cells of sensory neurons after different types of injury of the sciatic nerve of the rat, Morfologiya, 2009, vol. 135, no. 3, pp. 29–34.

    CAS  Google Scholar 

  • Benton, R.L., Ross, C.D., and Miller, K.E., Glutamine synthetase activities in spinal white and gray matter 7 days following spinal cord injury in rats, Neurosci. Lett., 2000, vol. 291, no. 1, pp. 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Carozzi, V.A., Canta, A., Oggioni, N., et al., Expression and distribution of “high affinity” glutamate transporters GLT1, GLAST, EAAC1 and of GCPII in the rat peripheral nervous system, J. Anat., 2008, vol. 213, no. 5, pp. 539–546.

    PubMed  PubMed Central  Google Scholar 

  • Cecchini, T., Ferri, P., Ciaroni, S., et al., Postnatal proliferation of DRG non-neuronal cells in vitamin E-deficient rats, Anat. Rec., 1999, vol. 256, no. 2, pp. 109–115.

    Article  PubMed  CAS  Google Scholar 

  • Costa, F.A.L. and Moreira Neto, F.L., Satellite glial cells in sensory ganglia: its role in pain, Rev. Bras. Anestesiol., 2015, vol. 65, no. 1, pp. 73–81.

    Article  PubMed  Google Scholar 

  • Donkelaar, H.J., Development and regenerative capacity of descending supraspinal pathways in tetrapods: a comparative approach, Adv. Anat. Embryol. Cell Biol., 2000, vol. 154, pp. 1–145.

    Article  Google Scholar 

  • Gong, K., Kung, L.H., Magni, G., et al., Increased response to glutamate in small diameter dorsal root ganglion neurons after sciatic nerve injury, PLoS One, 2014, vol. 9, no. 4, p. e95491.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanani, M. and Spray, D.C., Glial cells in autonomic and sensory ganglia, in Neuroglia, 3rd ed., Kettenmann, H. and Ransom, B.R., Eds., Oxford Univ. Press, 2013, pp. 122–133.

    Google Scholar 

  • Hanani, M., Satellite glial cells in sensory ganglia: from form to function, Brain Res. Rev., 2005, vol. 48, no. 3, pp. 457–476.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, E.M., Zhang, Z., Schechter, R., and Miller, K.E., Glutaminase increases in rat dorsal root ganglion neurons after unilateral adjuvant-induced hind paw inflammation, Biomolecules, 2016, vol. 6, no. 10, pp. 1–15.

    Google Scholar 

  • Huettner, J.E., Kerchner, G.A., and Zhuo, M., Glutamate and the presynaptic control of spinal sensory transmission, Neuroscientist, 2002, vol. 8, no. 2, pp. 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Jasmin, L., Vit, J.P., Bhargava, A., and Ohara, P.T., Can satellite glial cells be therapeutic targets for pain control?, Neuron. Glia Biol., 2010, vol. 6, no. 1, pp. 63–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koeppen, A.H., Ramirez, R.L., Becker, A.B., et al., Dorsal root ganglia in Friedreich ataxia: satellite cell proliferation and inflammation, Acta Neuropathol. Commun., 2016, vol. 4, p. 46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kolos, E.A. and Korzhevskii, D.E., Vimentin and s100 protein in the cells of forming sensory node of spinal nerve, Morfologiya, 2013, no. 3, pp. 74–76.

    Google Scholar 

  • Korzhevskii, D.E., Kirik, O.V., Petrova, E.S., et al., Teoreticheskie osnovy i prakticheskoe primenenie metodov immunogistokhimii: rukovodstvo (Theoretical Bases and Practical Application of Immunohistochemistry Methods: A Manual), St. Petersburg: SpetsLit, 2014.

    Google Scholar 

  • Kung, L.H., Gong, K., Adedoyin, M., et al., Evidence for glutamate as a neuroglial transmitter within sensory ganglia, PLoS One, 2013, vol. 8, no. 7, p. e68312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, C., Wu, W., Zhang, B., et al., Temporospatial expression and cellular localization of glutamine synthetase following traumatic spinal cord injury in adult rats, Mol. Med. Rep., 2013, vol. 7, no. 5, pp. 1431–1436.

    Article  PubMed  CAS  Google Scholar 

  • Martinelli, C., Sartori, P., Ledda, M., and Pannese, E., Age-related quantitative changes in mitochondria of satellite cell sheaths enveloping spinal ganglion neurons in the rabbit, Brain Res. Bull., 2003, vol. 61, no. 2, pp. 147–151.

    Article  PubMed  CAS  Google Scholar 

  • McKenna, M.C., The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain, J. Neurosci. Res., 2007, vol. 85, no. 15, pp. 3347–3358.

    Article  PubMed  CAS  Google Scholar 

  • Miller, K.E., Richards, B.A., and Kriebel, R.M., Glutamine-, glutamine synthetase-, glutamate dehydrogenase-and pyruvate carboxylase-immunoreactivities in the rat dorsal root ganglion and peripheral nerve, Brain Res., 2002, vol. 945, no. 2, pp. 202–211.

    Article  PubMed  CAS  Google Scholar 

  • Miranda-Contreras, L., Benítez-Díaz, P., Peña-Contreras, Z., et al., Levels of amino acid neurotransmitters during neurogenesis and in histotypic cultures of mouse spinal cord, Dev. Neurosci., 2002, vol. 24, pp. 59–70.

    Article  PubMed  CAS  Google Scholar 

  • Nascimento, R.S., Santiago, M.F., Marques, S.A., et al., Diversity among satellite glial cells in dorsal root ganglia of the rat, Braz. J. Med. Bio. Res., 2008, vol. 41, no. 11, pp. 1011–1017.

    Article  CAS  Google Scholar 

  • Nozdrachev, A.D. and Chumasov, E.I., Perifericheskaya nervnaya sistema (The Peripheral Nervous System), St. Petersburg: Nauka, 1999.

    Google Scholar 

  • Ohara, P.T., Vit, J.P., Bhargava, A., et al., Gliopathic pain: when satellite glial cells go bad, Neuroscientist, 2009, vol. 15, no. 5, pp. 450–463.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pannese, E., Observations on the morphology, submicroscopic structure and biological properties of satellite cells (s.c.) in sensory ganglia of mammals, Zeitschrift fur Zellforschung und mikroskopische Anatomie, 1960, vol. 52, pp. 567–597.

    Article  PubMed  CAS  Google Scholar 

  • Pannese, E., Number and structure of perisomatic satellite cells of spinal ganglia under normal conditions or during axon regeneration and neuronal hypertrophy, Z. zellforsch. Mikrosk. Anat., 1964, vol. 63, pp. 568–592.

    Article  PubMed  CAS  Google Scholar 

  • Pannese, E., The satellite cells of the sensory ganglia, Adv. Anat. Embryol. Cell Biol., 1981, vol. 65, pp. 1–111.

    Article  PubMed  CAS  Google Scholar 

  • Petrova, E.S. and Kolos, E.A., Nestin in rats spinal ganglionic cells, in Fundamental’nye i prikladnye problemy neironauk: funktsional’naya asimmetriya, neiroplastichnost’, neirodegeneratsiya. Materialy Vtoroi Vserossiiskoi konferentsii s mezhdunarodnym uchastiem (Fundamental and Applied Problems of Neurosciences: Functional Asymmetry, Neuroplasticity, and Neurodegeneration. Proc. Second All-Russia Conf. with Int. Particip.), Nauchnyi tsentr nevrologii, 2016, pp. 641–645.

    Google Scholar 

  • Raginov, I.S., Chelyshev, Yu.A., and Shagidullin, T.F., Interaction of sensory neurons and satellite cells during stimulation of nerve regeneration, Morfologiya, 2002, vol. 122, no. 4, pp. 37–39.

    CAS  Google Scholar 

  • Saitoh, F. and Araki, T., Proteasomal degradation of glutamine synthetase regulates schwann cell differentiation, J. Neurosci., 2010, vol. 30, no. 4, pp. 1204–1212.

    Article  PubMed  CAS  Google Scholar 

  • Schousboe, A., Scafidi, S., Bak, L.K., et al., Glutamate metabolism in the brain focusing on astrocytes, Adv. Neurobiol., 2014, vol. 11, pp. 13–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vega, J.A., Calzada, B., and Del Valle, M.E., Age-induced changes in the mammalian autonomic and sensory ganglia, in Aging of the Autonomic Nervous System, Amenta, F., Ed., Boca Raton, Florida: CRC Press, 1993, pp. 37–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kolos.

Additional information

Original Russian Text © E.A. Kolos, D.E. Korzhevskii, 2018, published in Ontogenez, 2018, Vol. 49, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolos, E.A., Korzhevskii, D.E. Glutamine Synthetase-Containing Cells of the Dorsal Root Ganglion at Different Stages of Rat Ontogeny. Russ J Dev Biol 49, 179–183 (2018). https://doi.org/10.1134/S1062360418030049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360418030049

Keywords

Navigation