Skip to main content
Log in

Photoperiod Regulates the Expression of GPx-5 in the Epididymis of Cricetulus barabensis through Androgen

  • ANIMAL AND HUMAN PHYSIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

For animals that breed seasonally, photoperiod is a key factor in controlling their behavior. Epididymal function is highly dependent on androgen. However, the effects of photoperiod on epididymal function and the regulatory mechanism of androgen in this process have not yet been reported. This study examined the effects of different photoperiods on androgen contents and the expression patterns of 5α-reductase, AR, and GPx-5 in the epididymis of Cricetulus barabensis to explore the role of androgens in photoperiod regulation of epididymal function and its mechanism in antioxidant stress. The results showed that in the caput epididymis, androgen content decreased with the shortening of light time, and the mRNA and protein levels of 5α-reductase 1 and androgen receptor (AR) in the long photoperiod (LP) group were significantly higher than those in the short photoperiod (SP) group. In the cauda epididymis, androgen content and the mRNA and protein level of GPx-5 were the lowest in the medium photoperiod (MP) group. In conclusion, these results suggest that androgens affected by the photoperiod may regulate the expression of GPx-5 through the androgen/AR pathway. The findings of this study will help to understand the physiological and biochemical status of the epididymis of seasonally breeding animals under different photoperiods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Aitken, R.J., Harkiss, D., Knox, W., Paterson, M., and Irvine, D.S., A novel signal transduction cascade in capacitating human spermatozoa characterised by a redox-regulated, cAMP-mediated induction of tyrosine phosphorylation, J. Cell Sci., 1998, vol. 111, part 5, pp. 645–656.

    Article  CAS  PubMed  Google Scholar 

  2. Belleannée, C., Labas, V., Teixeira-Gomes, A.P., Gatti, J.L., Dacheux, J.L., and Dacheux, F., Identification of luminal and secreted proteins in bull epididymis, J. Proteomics, 2011, vol. 74, no. 1, pp. 59–78.

    Article  PubMed  Google Scholar 

  3. Belleannee, C., Legare, C., Calvo, E., Thimon, V., and Sullivan, R., microRNA signature is altered in both human epididymis and seminal microvesicles following vasectomy, Hum. Reprod., 2013, vol. 28, no. 6, pp. 1455–1467.

    Article  CAS  PubMed  Google Scholar 

  4. Berman, D.M., and Russell, D.W., Cell-type-specific expression of rat steroid 5 alpha-reductase isozymes, Proc. Natl. Acad. Sci. U. S. A., 1993, vol. 90, no. 20, pp. 9359–9363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bernard, R., Shayesta, S., Mahsa, H., and Sophie-Anne, L., Androgenic regulation of novel genes in the epididymis, Asian J. Androl., 2007, vol. 9, no. 4, pp. 545–553.

    Article  Google Scholar 

  6. Breton, S., Ruan, Y.C., Park, Y.J., and Kim, B., Regulation of epithelial function, differentiation, and remodeling in the epididymis, Asian J. Androl., 2016, vol. 18, no. 1, pp. 3–9.

    Article  CAS  PubMed  Google Scholar 

  7. Brigelius-Flohe, R. and Maiorino, M., Glutathione peroxidases, Biochim. Biophys. Acta, Gen. Subj., 2013, vol. 1830, no. 5, pp. 3289–3303.

    Article  CAS  Google Scholar 

  8. Burnstein, K.L., Maiorino, C.A., Dai, J.L., and Cameron, D.J., Androgen and glucocorticoid regulation of androgen receptor cDNA expression, Mol. Cell. Endocrinol., 1995, vol. 115, no. 2, pp. 177–186.

    Article  CAS  PubMed  Google Scholar 

  9. Chabory, E., Damon, C., Lenoir, A., Kauselmann, G., Kern, H., Zevnik, B., et al., Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice, J. Clin. Invest., 2009, vol. 119, no. 7, pp. 2074–2085.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chabory, E., Damon, C., Lenoir, A., Henry-Berger, J., Vernet, P., Cadet, R., et al., Mammalian glutathione peroxidases control acquisition and maintenance of spermatozoa integrity, J. Anim. Sci., 2010, vol. 88, no. 4, pp. 1321–1331.

    Article  CAS  PubMed  Google Scholar 

  11. Charles, R.G., Robinson, F.E., Hardin, R.T., Yu, M.W., Feddes, J., and Classen, H.L., Growth, body composition, and plasma androgen concentration of male broiler chickens subjected to different regimens of photoperiod and light intensity, Poultry Sci., 1992, vol. 71, no. 10, pp. 1595–1605.

    Article  CAS  Google Scholar 

  12. Chauvin, T.R., Androgen-regulated genes in the murine epididymis, Biol. Reprod., 2004, vol. 71, no. 2, pp. 560–569.

    Article  CAS  PubMed  Google Scholar 

  13. Cooke, B.M., Hegstrom, C.D., and Breedlove, S.M., Photoperiod-dependent response to androgen in the medial amygdala of the Siberian hamster, Phodopus sungorus, J. Biol. Rhythms, 2002, vol. 17, no. 2, pp. 147–154.

    Article  CAS  PubMed  Google Scholar 

  14. Corbin, C.J., Legacki, E., Ball, B., Scoggin, K., and Conley, A.J., Equine 5α-reductase activity and expression in epididymis, J. Endocrinol., 2017, vol. 231, no. 1, pp. 23–33.

    Article  Google Scholar 

  15. Cornwall, G.A., New insights into epididymal biology and function, Hum. Reprod. Update, 2009, vol. 15, no. 2, pp. 213–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dai, J.L., Maiorino, C.A., Gkonos, P.J., and Burnstein, K.L., Androgenic up-regulation of androgen receptor cDNA expression in androgen-independent prostate cancer cells, Steroids, 1996, vol. 61, no. 9, pp. 531–539.

    Article  CAS  PubMed  Google Scholar 

  17. Dehm, S.M. and Tindall, D.J., Regulation of androgen receptor signaling in prostate cancer, Expert Rev. Anticancer Ther., 2005, vol. 5, no. 1, pp. 63–74.

    Article  CAS  PubMed  Google Scholar 

  18. Drevet, J.R., The antioxidant glutathione peroxidase family and spermatozoa: a complex story, Mol. Cell. Endocrinol., 2006, vol. 250, nos. 1–2, pp. 70–79.

    Article  CAS  PubMed  Google Scholar 

  19. El Allali, K., Sghiri, A., Bouaouda, H., Achaaban, M.R., Ouzir, M., Bothorel, B., et al., Effect of melatonin implants during the non-breeding season on the onset of ovarian activity and the plasma prolactin in dromedary camel, Front. Vet. Sci., 2018, vol. 5, p. 44.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Frungieri, M.B., Gonzalez-Calvar, S.I., Bartke, A., and Calandra, R.S., Influence of age and photoperiod on steroidogenic function of the testis in the golden hamster, Int. J. Androl., 1999, vol. 22, no. 4, pp. 243–252.

    Article  CAS  PubMed  Google Scholar 

  21. Ghyselinck, N.B., Dufaure, I., Lareyre, J.J., Rigaudiere, N., Mattei, M.G., and Dufaure, J.P., Structural organization and regulation of the gene for the androgen-dependent glutathione peroxidase-like protein specific to the mouse epididymis, Mol. Endocrinol. (Baltimore, Md.), 1993, vol. 7, no. 2, pp. 258–272.

    CAS  Google Scholar 

  22. Goncalves-de-Freitas, E., Carvalho, T.B., and Oliveira, R.F., Photoperiod modulation of aggressive behavior is independent of androgens in a tropical cichlid fish, Gen. Comp. Endocrinol., 2014, vol. 207, pp. 41–49.

    Article  CAS  PubMed  Google Scholar 

  23. González-Cadavid, N.F., Vernet, D., Navarro, A.F., Rodiguez, J., Swerdloff, R.S., and Rajfer, J., Up-regulation of the levels of androgen receptor and its mRNA by androgens in smooth-muscle cells from rat penis, Mol. Cell. Endocrinol., 1993, vol. 90, no. 2, pp. 219–229.

    Article  PubMed  Google Scholar 

  24. Griffiths, K., Eaton, C.L., Harper, M.E., Peeling, B., and Davies, P., Steroid hormones and the pathogenesis of benign prostatic hyperplasia, Eur. Urol., 1991, vol. 20, suppl. 1, no. 1, pp. 68–77.

  25. Hegstrom, C.D., Jordan, C.L., and Breedlove, S.M., Photoperiod and androgens act independently to induce spinal nucleus of the bulbocavernosus neuromuscular plasticity in the Siberian hamster, Phodopus sungorus, J. Neuroendocrinol., 2002, vol. 14, no. 5, pp. 368–374.

    Article  CAS  PubMed  Google Scholar 

  26. James, E.R., Carrell, D.T., Aston, K.I., Jenkins, T.G., Yeste, M., and Salas-Huetos, A., The role of the epididymis and the contribution of epididymosomes to mammalian reproduction, Int. J. Mol. Sci., 2020, vol. 21, no. 15, p. 5377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koziorowska-Gilun, M., Koziorowski, M., StrzeEk, J., and Fraser, L., Seasonal changes in antioxidant defence systems in seminal plasma and fluids of the boar reproductive tract, Reprod. Biol., 2011, vol. 11, no. 1, pp. 37–47.

    Article  Google Scholar 

  28. Kuenzel, W.J., Kang, S.W., and Zhou, Z.J., Exploring avian deep-brain photoreceptors and their role in activating the neuroendocrine regulation of gonadal development, Poultry Sci., 2015, vol. 94, no. 4, pp. 786–798.

    Article  CAS  Google Scholar 

  29. Lee, D.K. and Chang, C., Endocrine mechanisms of disease: expression and degradation of androgen receptor: mechanism and clinical implication, J. Clin. Endocrinol. Metab., 2003, vol. 88, no. 9, pp. 4043–4054.

    Article  CAS  PubMed  Google Scholar 

  30. Lefranois, A.M., Jimenez, C., and Dufaure, J.P., Developmental expression and androgen regulation of 24 kDa secretory proteins by the murine epididymis, Int. J. Androl., 1993, vol. 16, no. 2, pp. 147–154.

    Article  Google Scholar 

  31. Li, S.N., Xue, H.L., Zhang, Q., Xu, J.H., Wang, S., Chen, L., et al., Photoperiod regulates the differential expression of KiSS-1 and GPR54 in various tissues and sexes of striped hamster, Genet. Mol. Res., 2015a, vol. 14, no. 4, pp. 13894–13905.

    Article  CAS  PubMed  Google Scholar 

  32. Li, R.-I., Zhang, T., Fan, X.-m., Yang, X.-q.O., Zhang, C.-q., Cao, J.-w., et al., Study on expression of glutathione peroxidase type-5 (GPX5) and protein localization in epididymis of adult sheep, Sci. Agric. Sin., 2015b, vol. 48, no. 24, pp. 4989–4995.

    CAS  Google Scholar 

  33. Liu, C., Jiang, X.P., Liu, G.Q., Wassie, T., and Girmay, S., An ancient mutation in the TPH1 gene is consistent with the changes in mammalian reproductive rhythm, Int. J. Mol. Sci., 2019a, vol. 20, no. 23, p. 6065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, Q., Yu, W., Fan, S., Zhuang, H., and Weng, Q., Seasonal expressions of androgen receptor, estrogen receptors, 5α-reductases and P450arom in the epididymis of the male muskrat (Ondatra zibethicus), J. Steroid Biochem. Mol. Biol., 2019b, vol. 194, p. 105433.

    Article  CAS  PubMed  Google Scholar 

  35. Mahony, M.C., Swanlund, D.J., Billeter, M., Roberts, K.P., and Pryor, J.L., Regional distribution of 5α-reductase type 1 and type 2 mRNA along the human epididymis, Fertil. Steril., 1998, vol. 69, no. 6, p. 1116.

    Article  CAS  PubMed  Google Scholar 

  36. Mele, E., D’Auria, R., Scafuro, M., Marino, M., Fasano, S., Viggiano, A., et al., Differential expression of kisspeptin system and kisspeptin receptor trafficking during spermatozoa transit in the epididymis, Genes, 2022, vol. 13, no. 2, p. 295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morielli, T. and O’Flaherty, C., Oxidative stress impairs function and increases redox protein modifications in human spermatozoa, Reproduction, 2015, vol. 149, no. 1, pp. 113–123.

    Article  PubMed  Google Scholar 

  38. Mou, J.J., Xu, J.H., Wang, Z., Wang, C.L., Yang, X.Q., Wang, X.C., et al., Effects of photoperiod on morphology and function in testis and epididymis of Cricetulus barabensis, J. Cell. Physiol., 2021, vol. 236, no. 3, pp. 2109–2125.

    Article  CAS  PubMed  Google Scholar 

  39. O’Flaherty, C., Orchestrating the antioxidant defenses in the epididymis, Andrology, 2019, vol. 7, no. 5, pp. 662–668.

    Article  PubMed  Google Scholar 

  40. Pujol, A. and Bayard, F., Androgen receptors in the rat epididymis and their hormonal control, J. Reprod. Fertil., 1979, vol. 56, no. 1, p. 217.

    Article  CAS  PubMed  Google Scholar 

  41. Rejraji, H., Vernet, P., and Drevet, J.R., GPX5 is present in the mouse caput and cauda epididymidis lumen at three different locations, Mol. Reprod. Dev., 2002, vol. 63, no. 1, pp. 96–103.

    Article  CAS  PubMed  Google Scholar 

  42. Rigaudière, N., Ghyselinck, N.B., Faure, J., and Dufaure, J.P., Regulation of the epididymal glutathione peroxidase-like protein in the mouse: dependence upon androgens and testicular factors, Mol. Cell. Endocrinol., 1992, vol. 89, nos. 1–2, pp. 67–77.

    Article  PubMed  Google Scholar 

  43. Robaire, B. and Viger, R.S., Regulation of epididymal epithelial cell functions, Biol. Reprod., 1995, vol. 52, no. 2, pp. 226–236.

    Article  CAS  PubMed  Google Scholar 

  44. Robaire, B., Hinton, B.T., and Orgebin-Crist, M.C., The epididymis, in Knobil and Neill’s Physiology of Reproduction, 2006, vol. 1, 3rd ed., pp. 1071–1148.

  45. Rył, A., Rotter, I., Grzywacz, A., et al., Molecular analysis of the SRD5A1 and SRD5A2 genes in patients with benign prostatic hyperplasia with regard to metabolic parameters and selected hormone levels, Int. J. Environ. Res. Public Health, 2017, vol. 14, no. 11, p. 1318.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shan, L.X., Rodriguez, M.C., and Jänne, O., Regulation of androgen receptor protein and mRNA concentrations by androgens in rat ventral prostate and seminal vesicles and in human hepatoma cells, Mol. Endocrinol., 1990, vol. 4, no. 11, pp. 1636–1646.

    Article  CAS  PubMed  Google Scholar 

  47. Shoemaker, M.B. and Heideman, P.D., Reduced body mass, food intake, and testis size in response to short photoperiod in adult F344 rats, BMC Physiol., 2002, vol. 2, p. 11.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Silva, E.J.R., Queiroz, D.B.C., Honda, L., and Avellar, M.C.W., Glucocorticoid receptor in the rat epididymis: expression, cellmmular distribution and regulation by steroid hormones, Mol. Cell. Endocrinol., 2010, vol. 325, nos. 1–2, pp. 64–77.

    Article  CAS  PubMed  Google Scholar 

  49. Vernet, P., Rigaudire, N., Ghyselinck, N., et al., In vitro expression of a mouse tissue specific glutathione-peroxidase-like protein lacking the selenocysteine can protect stably transfected mammalian cells against oxidative damage, Biochem. Cell Biol., 1996, vol. 74, no. 1, pp. 125–131.

    Article  CAS  PubMed  Google Scholar 

  50. Vernet, P., Faure, J., Dufaure, J.P., and Drevet, J.R., Tissue and developmental distribution, dependence upon testicular factors and attachment to spermatozoa of GPX5, a murine epididymis-specific glutathione peroxidase, Mol. Reprod. Dev., 1997, vol. 47, no. 1, pp. 87–98.

    Article  CAS  PubMed  Google Scholar 

  51. Viger, R.S. and Robaire, B., The mRNAs for the steroid 5 alpha-reductase isozymes, types 1 and 2, are differentially regulated in the rat epididymis, J. Androl., 1996, vol. 17, no. 1, pp. 27–34.

    Article  CAS  PubMed  Google Scholar 

  52. Wang, J., Liu, Q., Qi, H., Wang, Y., Gao, Q., Gao, F., et al., Seasonal expressions of androgen receptor, P450arom and estrogen receptors in the epididymis of the wild ground squirrel (Citellus dauricus Brandt), Gen. Comp. Endocrinol., 2019, vol. 270, pp. 131–138.

    Article  CAS  PubMed  Google Scholar 

  53. Wang, C.L., Wang, Z., Mou, J.J., Wang, S., Zhao, X.Y., Feng, Y.Z., et al., Short photoperiod reduces oxidative stress by up-regulating the Nrf2-Keap1 signaling pathway in hamster kidneys, J. Evol. Biochem. Physiol., 2022, vol. 58, no. 2, pp. 418–429.

    Article  CAS  Google Scholar 

  54. Xu, L.X., Xue, H.L., Li, S.N., Xu, J.H., and Chen, L., Seasonal differential expression of KiSS-1/GPR54 in the striped hamsters (Cricetulus barabensis) among different tissues, Integr. Zool., 2017, vol. 12, no. 3, pp. 260–268.

    Article  PubMed  Google Scholar 

  55. Yamashita, S., Localization of estrogen and androgen receptors in male reproductive tissues of mice and rats, Anat. Rec., Part A, 2004, vol. 279, no. 2, pp. 768–778.

    Google Scholar 

  56. Yu, W.Y., Zhang, Z.W., Liu, P., Yang, X.Y., Zhang, H.L., Yuan, Z.R., et al., Seasonal expressions of SPAG11A and androgen receptor in the epididymis of the wild ground squirrels (Spermophilus dauricus Brandt), Eur. J. Histochem., 2020, vol. 64, no. 2, pp. 120–128.

    Article  Google Scholar 

  57. Zduńczyk, S., Janowski, T., Raś, A., and Barański, W., Activity of steroid sulphatase and estrogen sulphotransferase in the boar epididymis during the postpubertal period, Reprod. Biol., 2012, vol. 12, no. 4, pp. 374–378.

    Article  PubMed  Google Scholar 

  58. Zhang, T., Localization of plasminogen activator and inhibitor, LH and androgen receptors and inhibin subunits in monkey epididymis, Mol. Hum. Reprod., 1997, vol. 3, no. 11, pp. 945–952.

    Article  CAS  PubMed  Google Scholar 

  59. Zhao, X.Y., Wang, S., Xu, J.H., Wang, C.L., Feng, Y.Z., Xue, H.L., et al., Effects of short daylight and mild low temperature on mitochondrial degeneration in the testis of Cricetulus barabensis, Mol. Reprod. Dev., 2022, vol. 89, no. 9, pp. 413–422.

    Article  CAS  PubMed  Google Scholar 

  60. Zheng, W.M., Zhang, Y., Sun, C.Y., Ge, S.Y., Tan, Y.F., Shen, H.L., et al., A multi-omics study of human testis and epididymis, Molecules, 2021, vol. 26, no. 11, p. 3345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou, Z.X., Wong, C.I., Sar, M., and Wilson, E.M., The androgen receptor: an overview, Recent Prog. Horm. Res., 1994, vol. 49, no. 1, pp. 249–274.

    CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Wang Zhe for his guidance and help in the experiment.

Funding

This study was supported by the National Natural Science Foundation of China (nos. 32072436, 31770455, 31972283, 31800308).

Author information

Authors and Affiliations

Authors

Contributions

Yongzhen Feng and Shuo Wang contributed equally to this work.

Corresponding author

Correspondence to Jinhui Xu.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. The animal study was reviewed and approved by the Biomedical Ethics Committee of Qufu Normal University (Permit no. dwsc2022060). All procedures followed the Laboratory Animal Guidelines for the Ethical Review of Animal Welfare (GB/T 35892-2018) This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yongzhen Feng, Wang, S., Wang, X. et al. Photoperiod Regulates the Expression of GPx-5 in the Epididymis of Cricetulus barabensis through Androgen. Biol Bull Russ Acad Sci 50, 1316–1326 (2023). https://doi.org/10.1134/S1062359023602872

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023602872

Keywords:

Navigation