Skip to main content
Log in

Determination of Dose-Dependent Toxic Effect of Coronatine, a Bacterial Phytotoxin, with the Help of Physiological, Cytogenetic, Biochemical, and Anatomical Parameters Using the Allium cepa Test Model

  • CELL BIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The toxicity profile of coronatine (COR), a toxin produced by Pseudomonas bacteria using the Allium cepa test plant was determined with the help physiological analyzes including fresh weight, root number, root length and germination percentage; cytogenetic analyzes including chromosome aberration (CA), micronucleus frequency (MN), and mitotic index (MI); biochemical analyzes including superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and proline (PR) accumulation; and microscopic analyzes including changes in root anatomical structure. A. cepa bulbs were divided into four groups as one control (C) and three application. Group C bulbs were kept in cuvettes containing tap water for 168 hours (7 days), while treatment group bulbs were kept in cuvettes containing 1, 5, and 10 µM COR solutions. COR administration caused a decrease in all physiological parameters examined, a rise in the CA and MN frequency, also a diminish in MI compared to C group. COR promoted CAs such as irregular mitosis, nuclear peak, exposure of chromosome scaffold, chromosome losses, unequal seperation of chromosome, vagrant chromosomes and chromatid bridges. In addition, the mentioned application caused a dosege-bound enhancement in free PR, CAT, SOD and MDA contents according to C group. Moreover, 10 µM COR, the highest application dose, caused quite significant damages such as epidermis cell deformations, micronucleus in epidermis/cortex, accumulation of various chemicals in the cortex layer, thickening of the cortex cell wall, flattened cell nuclei, necrosis and unclear transmission tissue in root anatomical structure of the bulbs. In summary, it was concluded that COR is a chemical with inhibitive impacts and the Allium cepa testing is a utility bioindicator for following these impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Abbas, T., Nadeem, M.A., Tanveer, A., and Chauhan, B.S., Can hormesis of plant released phytotoxins be used to boost and sustain crop production?, Crop Protect., 2017, vol. 93, pp. 69–76.

    Article  Google Scholar 

  2. Akgunduz, M.C., Cavusoglu, K., and Yalcin, E., The potential risk assessment of phenoxyethanol with a versatile model system, Sci. Rep., 2020, vol. 10, pp. 1209–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Andrade, L.F., Davide, L.C., and Gedraite, L.S., The effect of cyanide compounds, fluorides, aluminum, and inorganic oxides present in spent pot liner on germination and root tip cells of Lactuca sativa, Ecotoxicol. Environ. Saf., 2010, vol. 73, pp. 626–631.

    Article  CAS  PubMed  Google Scholar 

  4. Baker, A.J.M., Accumulators and excluders-strategies in the response of plants to heavy metals, J. Plant Nutr., 1981, vol. 3, pp. 643–654.

    Article  CAS  Google Scholar 

  5. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water stress studies, Plant Soil., 1973, vol. 39, pp. 205–207.

    Article  CAS  Google Scholar 

  6. Beauchamp, C. and Fridovich, I., Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 1971, vol. 44, pp. 276–287.

    Article  CAS  PubMed  Google Scholar 

  7. Beers, R.F. and Sizer, I.W., Colorimetric method for estimation of catalase, J. Biol. Chem., 1952, vol. 195, pp. 133–139.

    Article  CAS  PubMed  Google Scholar 

  8. Boughalleb, F., Abdellaoui, R., Mahmoudi, M., and Bakhshandeh, E., Changes in phenolic profile, soluble sugar, proline, and antioxidant enzyme activities of Polygonum equisetiforme in response to salinity, Turk. J. Bot., 2020, vol. 44, pp. 25–35.

    Article  CAS  Google Scholar 

  9. Brooks, D.M., Bender, C.L., and Kunkel, B.N., The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defenses in Arabidopsis thaliana, Mol. Plant Pathol., 2005, vol. 6, pp. 629–639.

    Article  CAS  PubMed  Google Scholar 

  10. Bucheli, T.D., Phytotoxins: Environmental Micropollutants of Concern?, ACS Publications, 2014.

    Google Scholar 

  11. Celik, O. and Atak, C., The effect of salt stress on antioxidative enzymes and proline content of two Turkish tobacco varieties, Turk. J. Biol., 2012, vol. 36, pp. 339–356.

    CAS  Google Scholar 

  12. Ceylan, H.A., Turkan, I., and Sekmen, A.H., Effect of coronatine on antioxidant enzyme response of chickpea roots to combination of PEG-induced osmotic stress and heat stress, J. Plant Growth Regul., 2013, vol. 32, pp. 72–82.

    Article  CAS  Google Scholar 

  13. Chaparro, T.R., Botta, C.M., and Pires, E.C., Biodegradability and toxicity assessment of bleach plant effluents treated anaerobically, Water Sci. Technol., 2010, vol. 62, pp. 1312–1319.

    Article  CAS  PubMed  Google Scholar 

  14. Chen, H., Singh, H., Bhardwaj, N., Bhardwaj, S.K., Khatri, M., Kim, K.H., and Peng, W., An exploration on the toxicity mechanisms of phytotoxins and their potential utilities, Crit. Rev. Environ. Sci. Technol., 2020, vol. 52, no. 3, pp. 395–435.

    Article  Google Scholar 

  15. Dinakar, C., Abhaypratap, V., Yearla, S.R., Raghavendra, A.S., and Padmasree, K., Importance of ROS and antioxidant system during the beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation, Planta, 2010, vol. 231, pp. 461–474.

    Article  CAS  PubMed  Google Scholar 

  16. El-Ghamery, A.A., El-Kholy, M.A., and Abou El-Yousser, M.A., Evaluation of cytological effects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L., Mutat. Res., 2003, vol. 537, pp. 29–41.

    Article  CAS  PubMed  Google Scholar 

  17. Fedina, I.S. and Benderliev, K.M., Response of Scendesmus incrassatulus to salt stress as affected by methyl jasmonate, Biol. Plant., 2000, vol. 43, pp. 625–627.

    Article  CAS  Google Scholar 

  18. Fernandes, T.C.C., Mazzeo, D.E.C., and Marin Morales, M.A., Mechanism of micronuclei formation in polyploidizated cells of A. cepa exposed to trifluralin herbicide, Pest. Biochem. Physiol., 2007, vol. 88, pp. 252–259.

    Article  CAS  Google Scholar 

  19. Geng, X.Q., Jin, L., Shimada, M., Kim, M.G., and Mackey, D., The phytotoxin coronatine is a multi functional component of the virulence armament of Pseudomonas syringae, Planta, 2014, vol. 240, pp. 1149–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grant, W.F., Higher plant assays for the detection of chromosomal aberrations and gene mutations-a brief historical back ground on their use for screening and monitoring environmental chemicals, Mutat. Res., 1999, vol. 426, pp. 107–112.

    Article  CAS  PubMed  Google Scholar 

  21. Greulich, F., Yoshihara, T., and Ichihara, A., Coronatine, a bacterial phytotoxin, acts as a stereospecific analog of jasmonate type signals in tomato cells and potato tissues, J. Plant Physiol., 1995, vol. 147, pp. 359–366.

    Article  CAS  Google Scholar 

  22. Harashima, H. and Schnittger, A., The integration of cell division, growth and differentiation, Curr. Opin. Plant Biol., 2010, vol. 13, pp. 66–74.

    Article  CAS  PubMed  Google Scholar 

  23. Hao, L., Wang, Y.Q., Zhang, J., Xie, Y., Zhang, M.C., Duan, L.S., and Li, Z.H., Coronatine enhances drought tolerance via improving antioxidative capacity to maintaining higher photosynthetic performance in soybean, Plant Sci., 2013, vol. 210, pp. 1–9.

    Article  CAS  PubMed  Google Scholar 

  24. Janero, D.R., Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury, Free Radic. Biol. Med., 1990, vol. 9, pp. 515–540.

    Article  CAS  PubMed  Google Scholar 

  25. Kalcheva, V.P., Dragoeva, A.P., Kalchev, K.N., and Enchev, D.D., Cytotoxic and genotoxic effects of Br-containing oxaphosphole on Allium cepa L. root tip cells and mouse bone marrow cells, Genet. Mol. Biol., 2009, vol. 32, pp. 389–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kenyon, J.S. and Turner, J.G., Physiological changes in Nicotiana tobacum leaves during development of chlorosis caused by coronatine, Physiol. Mol. Plant Pathol., 1990, vol. 37, pp. 463–477.

    Article  CAS  Google Scholar 

  27. Kenyon, J.S. and Turner, J.G., The stimulation of ethylene synthesis in Nicotiana tabacum leaves by the phytotoxin coronatine, Plant Physiol., 1992, vol. 100, no. 1, pp. 219–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lauchli, R. and Boland, W., Indanoyl amino acid conjugates: tunable elicitors of plant secondary metabolism, Chem. Rec., 2003, vol. 3, pp. 12–21.

    Article  CAS  PubMed  Google Scholar 

  29. Leme, D.M. and Marin-Morales, M.A., Allium cepa test in environmental monitoring: a review on its application, Mutat. Res., 2009, vol. 82, pp. 71–81.

    Article  Google Scholar 

  30. Liu, H., Liao, B., and Lu, S.Q., Toxicity of surfactant, acid rain and Cd2+ combined pollution to the nucleus of Vicia faba root tip cells, Chin. J. Appl. Ecol., 2004, vol. 15, pp. 493–496.

    CAS  Google Scholar 

  31. Li, Y., Huang, G., Guo, Y., Zhou, Y., and Duan, L., Coronatine enhances stalk bending resistance of maize, thickens the cell wall and decreases the area of the vascular bundles, Agronomy., 2020, vol. 10, pp. 807–821.

    Article  Google Scholar 

  32. Lim, T.K., Modified stems, roots, bulbs, in Edible Medicinal and Non-Medicinal Plants, The Netherlands: Springer, 2015, pp. 124–203.

    Book  Google Scholar 

  33. Lin, A.I., Zhao-Hu, L.I., Jian-Min, L.I., Xiao-Li, T., Bao-Min, W., Zhi-Xi, Z., and Liu-Sheng, D., Physiological effects of coronatine on seed germination of upland and lowland rice, Acta Agric., 2008, vol. 22, pp. 443–446.

    Google Scholar 

  34. Liu, Y., Zhou, Y., Huang, G., Zhu, N., Li, Z., Zhang, M., and Duan, L., Coronatine inhibits mesocotyl elongation by promoting ethylene production in etiolated maize seedlings, Plant Growth Regul., 2020, vol. 90, pp. 51–61.

    Article  CAS  Google Scholar 

  35. Marrelli, M., Amodeo, V., Statti, G., and Conforti, F., Biological properties and bioactive components of Allium cepa L.: focus on potential benefits in the treatment of obesity and related comorbidities, Molecules, 2019, vol. 24, pp. 119–136.

    Article  Google Scholar 

  36. Matysik, J., Alia-Bhalu, B., and Mohanty, P., Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants, Curr. Sci., 2002, vol. 82, pp. 525–532.

    CAS  Google Scholar 

  37. Melotto, M., Underwood, W., and He, S.Y., Role of stomata in plant innate immunity and foliar bacterial disease, Annu. Rev. Phytopathol., 2008, vol. 46, pp. 101–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Munns, R. and Tester, M., Mechanisms of salinity tolerance, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 651–681.

    Article  CAS  PubMed  Google Scholar 

  39. Norppa, H. and Falck, G.C., What do human micronuclei contain?, Mutagenesis., 2003, vol. 18, pp. 221–233.

    Article  CAS  PubMed  Google Scholar 

  40. Odjegba, V.J. and Adeniran, R.A., Bentazone herbicide induces genotoxic effect and physiological disorders in non-targeted Allium cepa L., Indian J. Plant Physiol., 2015, vol. 20, pp. 375–379.

    Article  Google Scholar 

  41. Peruzzi, L., Carta A., and Altinordu, F., Chromosome diversity and evolution in Allium (Allioideae, Amaryllidaceae), Plant Biosyst., 2017, vol. 151, pp. 212–220.

    Article  Google Scholar 

  42. Saunders, W.S., Shuster, M., Huang, A., Gharaibeh, B., Enyenihi, A.H., Petersen, I., and Gollin, S.M., Chromosomal instability and cytoskeletal defects in oral cancer cells, Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, pp. 303–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharma, P.C. and Gupta, P.K., Karyotypes in some pulse crops, Nucleus, 1982, vol. 25, pp. 181–185.

    Google Scholar 

  44. Soares, A.M.S., Souza, T.F., Jacinto, T., and Machado, O.L.T., Effect of methyl jasmonate on antioxidative enzyme activities and on the contents of ROS and H2O2 in Ricinus communis leaves, Braz. J. Plant Physiol., 2010, vol. 22, pp. 151–158.

    Article  Google Scholar 

  45. Srivastava, A.K. and Singh, D., Assessment of malathion toxicity on cytophysiological activity, DNA damage and antioxidant enzymes in root of Allium cepa model, Sci. Rep., 2020, vol. 10, pp. 1–10.

    Article  CAS  Google Scholar 

  46. Schuler, G., Mithofer, A., Baldwin, I.T., Berger, S., Ebel, J., Santos, J.G., Herrmann, G., Holscher, D., Kramell, R., Kutchan, T.M., Maucher, H., Schneider, B., Stenzel, I., Wasternack, C., and Boland, W., Coronalon: a powerful tool in plant stress physiology, FEBS Lett., 2004, vol. 563, pp. 17–22.

    Article  CAS  PubMed  Google Scholar 

  47. Tedesco, S.B. and Laughinghouse, I.V.H.D., Boindicator of genotixicity. The Allium cepa test, J. Environ. Contam., 2012, pp. 138–156.

  48. Thakur, A., Sharma, V., and Thakur, A., Phytotoxin: a mini review, J. Pharmacogn. Phytochem., 2018, vol. 7, pp. 2705–2708.

    CAS  Google Scholar 

  49. Turkoglu, S., Genotoxicity of five food preservatives tested on root tips of Allium cepa L., Mutat. Res., 2007, vol. 626, pp. 4–14.

    Article  PubMed  Google Scholar 

  50. Unyayar, S., Celik, A., Cekic, F.O., and Gozel, A., Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba, Mutagenesis, 2006, vol. 21, pp. 77–81.

    Article  CAS  PubMed  Google Scholar 

  51. Uppalapati, S.R., Ayoubi, P., Weng, H., Palmer, D.A., Mitchell, R.E., Jones, W., and Bender, C.L., The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato, Plant J., 2005, vol. 42, pp. 201–217.

    Article  CAS  PubMed  Google Scholar 

  52. Uppalapati, S.R., Yasuhiro, I., Tamding, W., Ewa, U.W., Takako, I., Kirankumar, S.M., and Bender, C.L., Pathogenicity of Pseudomonas syringae pv. tomato on tomato seedlings: phenotypic and gene expression analyses of the virulence function of coronatine, Mol. Plant-Microbe Interact., 2008, vol. 21, pp. 383–395.

    Article  Google Scholar 

  53. Wang, B.Q., Li, Z.H., Eneji, A.E., Tian, X.L., Zhai, Z.X., Li, J.M., and Duan, L.S., Effects of coronatine on growth, gas exchange traits, chlorophyll content, antioxidant enzymes and lipid peroxidation in maize (Zea mays L.) seedlings under simulated drought stress, Plant Prod. Sci., 2008, vol. 11, pp. 282–290.

    Article  Google Scholar 

  54. Wang, X.S. and Han, J.G., Changes in proline content, activity, and active isoforms of antioxidative enzymes in two alfalfa cultivars under salt stress, Agric. Sci. China., 2009, vol. 8, pp. 431–440.

    Article  CAS  Google Scholar 

  55. Xie, Z.X., Duan, L.S., Li, Z.H., Wang, X.D., and Liu, X.J., Dose-dependent effects of coronatine on cotton seedling growth under salt stress, J. Plant Growth Regul., 2015, vol. 34, pp. 651–664.

    Article  CAS  Google Scholar 

  56. Xu, J., Zhou, Y., Xu, Z., Chen, Z., and Duan, L., Combining physiological and metabolomic analysis to unravel the regulations of coronatine alleviating water stress in tobacco (Nicotiana tabacum L.), Biomolecules, 2020, vol. 10, pp. 99–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yalcın, E., Macar, O., Kalefetoglu Macar, T., Cavusoglu, D., and Cavusoglu, K., Multi-protective role of Echinacea purpurea L. water extract in Allium cepa L. against mercury(II) chloride, ESPR, 2021, vol. 28, no. 44, pp. 62868–62876.

    PubMed  Google Scholar 

  58. Yarsan, E., Lipid peroxidation event and its applications for prevention, Van Vet. J., 2014, vol. 9, pp. 89–95.

    Google Scholar 

  59. Zhou, Y.L., Irene, V.V., Robert, C.S., Corne, M.J.P., and Saskia, C.M.V.W., Atmospheric CO2 alters resistance of Arabidopsis to Pseudomonas syringae by affecting abscisic acid accumulation and stomatal responsiveness to coronatine, Front. Plant Sci., 2017, vol. 8, pp. 700–713.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zou, J., Yue, J., Jiang, W., and Liu, D., Effects of cadmium stress on root tip cells and some physiological indexes in Allium cepa var. agrogarum L., Acta Biol. Cracov. Ser. Bot., 2012, vol. 54, pp. 129–141.

    Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work. All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to D. Çavuşoğlu.

Ethics declarations

The authors declare that they have no conflicts of interest.

The authors confirm that the manuscript has been read and approved by all authors. The authors declare that this manuscript has not been published and not under consideration for publication elsewhere. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çavuşoğlu, D., Çavuşoğlu, K. Determination of Dose-Dependent Toxic Effect of Coronatine, a Bacterial Phytotoxin, with the Help of Physiological, Cytogenetic, Biochemical, and Anatomical Parameters Using the Allium cepa Test Model. Biol Bull Russ Acad Sci 50, 1081–1092 (2023). https://doi.org/10.1134/S1062359023602124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023602124

Keywords:

Navigation