Skip to main content
Log in

Chemical Characterization, Antibacterial, Antifungal, Antioxidant and Oxidant Activities of Wild Mushrooms Rhizopogon luteolus and Rhizopogon roseolus

  • BOTANY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Mushrooms are natural materials with nutritious, poisonous, hallucinogenic and medicinal properties. Wild mushrooms are known to have many medicinal properties. In this study, antioxidant, oxidant and antimicrobial potentials, phenolic and element contents of wild mushrooms Rhizopogon roseolus (Corda) Th. Fr. and R. luteolus Fr. were determined. Antioxidant (TAS) and oxidant status (TOS) were determined using Rel Assay Diagnostics kits. Antimicrobial activities were measured against bacterial and fungal strains using the agar dilution method. Element contents (Cr, Cu, Mn, Fe, Ni, Cd, Pb and Zn) were measured using atomic absorption spectrophotometer. Phenolic contents were screened using LC-MS/MS device. As a result of the study, TAS values of R. luteolus and R. roseolus were determined as 2.327 ± 0.132 and 3.260 ± 0.119, TOS values was 27.057 ± 1.128 and 19.850 ± 0.433, and OSI values was 1.163 ± 0.116 and 0.611 ± 0.032, respectively. It was determined that the extracts of mushrooms were effective against standard bacterial and fungal strains at 25–400 µg/mL concentrations. Fe, Cu, Pb, Ni, Mn, Co and Cr levels were found to be higher in R. roseolus. Zn and Cd levels were higher in R. luteolus. As a result of the analysis, acetohydroxamic acid, fumaric acid, salicylic acid and luteolin were determined in both mushroom species. Phloridzindyhrate was determined only in R. roseolus. Ellagic acid and Curcumin were also found in R. luteolus. As a result, it was determined that R. luteolus and R. roseolus could be a natural source for the determined compounds. It has also been found that mushrooms have antioxidant potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Amborabé, B.E., Fleurat-Lessard, P., Chollet, J.F., and Roblin, G., Antifungal effects of salicylic acid and other benzoic acid derivatives towards Eutypa lata: structure–activity relationship, Plant Physiol. Biochem., 2002, vol. 40, no. 12, pp. 1051–1060.

    Article  Google Scholar 

  2. Antony, S., Kuttan, R., and Kuttan, G., Immunomodulatory activity of curcumin, Immunol. Invest., 1999, vol. 28, nos. 5–6, pp. 291–303.

    Article  CAS  Google Scholar 

  3. Aziz, N., Kim, M.Y., and Cho, J.Y., Anti-inflammatory effects of luteolin: a review of in vitro, in vivo, and in silico studies, J. Ethnopharmacol., 2018, vol. 225, pp. 342–358.

    Article  CAS  Google Scholar 

  4. Baba, H., Sevindik, M., Dogan, M., and Akgül, H., Antioxidant, antimicrobial activities and heavy metal contents of some Myxomycetes, Fresen. Environ. Bull., 2020, vol. 29, no. 09, pp. 7840–7846.

    CAS  Google Scholar 

  5. Bal, C., Sevindik, M., Akgul, H., and Selamoglu, Z., Oxidative stress index and antioxidant capacity of Lepista nuda collected from Gaziantep/Turkey, Sigma, 2019, vol. 37, no. 1, pp. 1–5.

    Google Scholar 

  6. Barclay, L.R.C., Vinqvist, M.R., Mukai, K., Goto, H., Hashimoto, Y., Tokunaga, A., and Uno, H., On the antioxidant mechanism of curcumin: classical methods are needed to determine antioxidant mechanism and activity, Org. Lett., 2000, vol. 2, no. 18, pp. 2841–2843.

    Article  CAS  Google Scholar 

  7. Binder, M. and Hibbett, S.D., Molecular systematics and biological diversification of Boletales, Mycologia, 2006, vol. 98, no. 6, pp. 971–981.

    Article  Google Scholar 

  8. Bruns, T.D., Peay, K.G., Boynton, P.J., Grubisha, L.C., Hynson, N.A., Nguyen, N.H., and Rosenstock, N.P., Inoculum potential of Rhizopogon spores increases with time over the first 4 yr of a 99-yr spore burial experiment, New Phytol., 2019, vol. 181, no. 2, pp. 463–470.

    Article  Google Scholar 

  9. Cerletti, C., Esposito, S., and Iacoviello, L., Edible mushrooms and beta-glucans: ımpact on human health, Nutrients, 2021, vol. 13, no. 7, p. 2195.

    Article  CAS  Google Scholar 

  10. Chakraborty, N., Banerjee, A., Sarkar, A., Ghosh, S., and Acharya, K., Mushroom polysaccharides: a potent immune-modulator, Biointerface Res. Appl. Chem., 2021, vol. 11, pp. 8915–8930.

    CAS  Google Scholar 

  11. Chang, H.H., Chien, P.J., Tong, M.H., and Sheu, F., Mushroom immunomodulatory proteins possess potential thermal/freezing resistance, acid/alkali tolerance and dehydration stability, Food Chem., 2007, vol. 105, no. 2, pp. 597–605.

    Article  CAS  Google Scholar 

  12. Egorova, K.S., Seitkalieva, M.M., Posvyatenko, A.V., Khrustalev, V.N., and Ananikov, V.P., Cytotoxic activity of salicylic acid-containing drug models with ionic and covalent binding, ACS Med. Chem. Lett., 2015, vol. 6, no. 11, pp. 1099–1104.

    Article  CAS  Google Scholar 

  13. Eraslan, E.C., Altuntas, D., Baba, H., Bal, C., Akgül, H., Akata, I., and Sevindik, M., Some biological activities and element contents of ethanol extract of wild edible mushroom Morchella esculenta, Sigma, 2021, vol. 39, no. 1, pp. 24–28.

    Google Scholar 

  14. Erel, O., A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation, Clin. Biochem., 2004, vol. 37, no. 4, pp. 277–285.

    Article  CAS  Google Scholar 

  15. Erel, O., A new automated colorimetric method for measuring total oxidant status, Clin. Biochem., 2005, vol. 38, no. 12, pp. 1103–1111.

    Article  CAS  Google Scholar 

  16. Falandysz, J., Treu, R., and Meloni, D., Distribution and bioconcentration of some elements in the edible mushroom Leccinum scabrum from locations in Poland, J. Environ. Sci. Health B, 2021, vol. 56, no. 4, pp. 396–414.

    Article  CAS  Google Scholar 

  17. Fan, W., Qian, S., Qian, P., and Li, X., Antiviral activity of luteolin against Japanese encephalitis virüs, Virus Res., 2006, vol. 220, pp. 112–116.

    Article  Google Scholar 

  18. Giridharan, V.V., Thandavarayan, R.A., and Konishi, T., Amelioration of scopolamine induced cognitive dysfunction and oxidative stress by Inonotus obliquus—a medicinal mushroom, Food Funct., 2011, vol. 2, no. 6, pp. 320–327.

    Article  CAS  Google Scholar 

  19. Girish, C., Koner, B.C., Jayanthi, S., Ramachandra Rao, K., Rajesh, B., and Pradhan, S.C., Hepatoprotective activity of picroliv, curcumin and ellagic acid compared to silymarin on paracetamol induced liver toxicity in mice, Fundam. Clin. Pharmacol., 2009, vol. 23, no. 6, pp. 735–745.

    Article  CAS  Google Scholar 

  20. Gursoy, N., Sarikurkcu, C., Tepe, B., and Solak, M.H., Evaluation of antioxidant activities of 3 edible mushrooms: Ramaria flava (Schaef.: Fr.) Quél., Rhizopogon roseolus (Corda) TM Fries., and Russula delica Fr, Food Sci. Biotechnol., 2010, vol. 19, no. 3, pp. 691–696.

    Article  CAS  Google Scholar 

  21. Han, D.H., Lee, M.J., and Kim, J.H., Antioxidant and apoptosis-inducing activities of ellagic acid, Anticancer Res., 2006, vol. 26, no. 5A, pp. 3601–3606.

    CAS  Google Scholar 

  22. He, C.L., Fu, B.D., Shen, H.Q., Jiang, X.L., and Wei, X.B., Fumaric acid, an antibacterial component of Aloe vera L., Afr. J. Biotechnol., 2011, vol. 10, no. 15, pp. 2973–2977.

    Article  CAS  Google Scholar 

  23. Islek, C., Saridogan, B.G.O., Sevindik, M., and Akata, I., Biological activities and heavy metal contents of some Pholiota species, Fresen. Environ. Bull., 2021, vol. 30, no. 06, pp. 6109–6114.

    CAS  Google Scholar 

  24. Jayakumar, T., Sakthivel, M., Thomas, P.A., and Geraldine, P., Pleurotus ostreatus, an oyster mushroom, decreases the oxidative stress induced by carbon tetrachloride in rat kidneys, heart and brain, Chem. Biol. Interact., 2008, vol. 176, nos. 2–3, pp. 108–120.

    Article  CAS  Google Scholar 

  25. Kalyoncu, F., Oskay, M., and Kayalar, H., Antioxidant activity of the mycelium of 21 wild mushroom species, Mycology, 2010, vol. 1, no. 3, pp. 195–199.

    Article  CAS  Google Scholar 

  26. Korkmaz, A. I., Akgul, H., Sevindik, M., and Selamoglu, Z., Study on determination of bioactive potentials of certain lichens, Acta Aliment., 2018, vol. 47, no. 1, pp. 80–87.

    Article  CAS  Google Scholar 

  27. Köksal, E., Tohma, H., Kılıç, Ö., Alan, Y., Aras, A., Gülçin, I., and Bursal, E., Assessment of antimicrobial and antioxidant activities of Nepeta trachonitica: analysis of its phenolic compounds using HPLCMS/MS, Sci. Pharm., 2017, vol. 85, no. 2, p. 24.

    Article  Google Scholar 

  28. Krupodorova, T. and Sevindik, M., Antioxidant potential and some mineral contents of wild edible mushroom Ramaria stricta, AgroLife Sci. J., 2020, vol. 9, no. 1, pp. 186–191.

    Google Scholar 

  29. Kulkarni, S.K., Bhutani, M. K., and Bishnoi, M., Antidepressant activity of curcumin: involvement of serotonin and dopamine system, Psychopharmacology, 2008, vol. 201, no. 3, pp. 435–442.

    Article  CAS  Google Scholar 

  30. Kumla, J., Suwannarach, N., Tanruean, K., and Lumyong, S., Comparative evaluation of chemical composition, phenolic compounds, and antioxidant and antimicrobial activities of tropical black bolete mushroom using different preservation methods, Foods, 2021, vol. 10, no. 4, p. 781.

    Article  CAS  Google Scholar 

  31. Kuroda, K. and Akao, M., Antitumor and anti-intoxication activities of fumaric acid in cultured cells, Gann, 1981, vol. 72, no. 5, pp. 777–782.

    CAS  Google Scholar 

  32. Lee, E.J., Oh, S.Y., and Sung, M.K., Luteolin exerts anti-tumor activity through the suppression of epidermal growth factor receptor-mediated pathway in MDA-MB-231 ER-negative breast cancer cells, Food Chem. Toxicol., 2012, vol. 50, no. 11, pp. 4136–4143.

    Article  CAS  Google Scholar 

  33. Li, Z.J., Guo, X., Dawuti, G., and Aibai, S., Antifungal activity of ellagic acid in vitro and in vivo, Phytother. Res., 2015, vol. 29, no. 7, pp. 1019–1025.

    Article  CAS  Google Scholar 

  34. Liu, Y.H., Lu, Y.L., Liu, D.Z., and Hou, W.C., Antiglycation, radical scavenging, and semicarbazide-sensitive amine oxidase inhibitory activities of acetohydroxamic acid in vitro, Drug Des. Dev., 2017, vol. 11, p. 2139.

    CAS  Google Scholar 

  35. Losso, J.N., Bansode, R.R., Trappey II, A., Bawadi, H.A., and Truax, R., In vitro anti-proliferative activities of ellagic acid, J. Nutr. Biochem., 2004, vol. 15, no. 11, pp. 672–678.

    Article  CAS  Google Scholar 

  36. Maity, G.N., Maity, P., Khatua, S., Acharya, K., Dalai, S., and Mondal, S., Structural features and antioxidant activity of a new galactoglucan from edible mushroom Pleurotus djamor, Int. J. Biol. Macromol., 2021, vol. 168, pp. 743–749.

    Article  CAS  Google Scholar 

  37. Marín, M., Giner, R.M., Ríos, J.L., and Recio, M.C., Intestinal anti-inflammatory activity of ellagic acid in the acute and chronic dextrane sulfate sodium models of mice colitis, J. Ethnopharmacol., 2013, vol. 150, no. 3, pp. 925–934.

    Article  Google Scholar 

  38. Menon, L.G., Kuttan, R., and Kuttan, G., Anti-metastatic activity of curcumin and catechin, Cancer Lett., 1999, vol. 141, nos. 1–2, pp. 159–165.

    Article  CAS  Google Scholar 

  39. Mleczek, M., Budka, A., Kalač, P., Siwulski, M., and Niedzielski, P., Family and species as determinants modulating mineral composition of selected wild-growing mushroom species, Environ. Sci. Pollut. Res., 2021, vol. 28, no. 1, pp. 389–404.

    Article  CAS  Google Scholar 

  40. Mushtaq, W., Baba, H., Akata, I., and Sevindik, M., Antioxidant potential and element contents of wild edible mushroom Suillus granulatus, KSÜ Doğa Bil. Derg., 2020, vol. 23, no. 3, pp. 592–595.

    Google Scholar 

  41. Rao, T.S., Basu, N., and Siddiqui, H.H., Anti-inflammatory activity of curcumin analogues, Indian J. Med. Res., 2013, vol. 137, no. 4, pp. 574–578.

    Google Scholar 

  42. Rašeta, M., Popović, M., Knežević, P., Šibul, F., Kaišarević, S., and Karaman, M., Bioactive phenolic compounds of two medicinal mushroom species Trametes versicolor and Stereum subtomentosum as antioxidant and antiproliferative agents, Chem. Biodiversity, 2020, vol. 17, no. 12, p. e2000683.

    Article  Google Scholar 

  43. Roy, S., Mallick, S., Chakraborty, T., Ghosh, N., Singh, A.K., Manna, S., and Majumdar, S., Synthesis, characterisation and antioxidant activity of luteolin–vanadium(II) complex, Food Chem., 2015, vol. 173, pp. 1172–1178.

    Article  CAS  Google Scholar 

  44. Sadi, G., Emsen, B., Kaya, A., Kocabaş, A., Çınar, S., and Kartal, D.I., Cytotoxicity of some edible mushrooms extracts over liver hepatocellular carcinoma cells in conjunction with their antioxidant and antibacterial properties, Pharmacogn. Mag., 2015, vol. 11, pp. S6–S18.

    Article  Google Scholar 

  45. Sami, R., Elhakem, A., Alharbi, M., Benajiba, N., Almatrafi, M., Jing, J., and Helal, M., Effect of titanium dioxide nanocomposite material and antimicrobial agents on mushrooms shelf-life preservation, Processes, 2020, vol. 8, no. 12, p. 1632.

    Article  CAS  Google Scholar 

  46. Saridogan, B.G.O., Islek, C., Baba, H., Akata, I., and Sevindik, M., Antioxidant antimicrobial oxidant and elements contents of Xylaria polymorpha and X. hypoxylon (Xylariaceae), Fresen. Environ. Bull., 2021, vol. 30, no. 5, pp. 5400–5404.

    CAS  Google Scholar 

  47. Sebök, B., Bonnekoh, B., Geisel, J., and Mahrle, G., Antiproliferative and cytotoxic profiles of antipsoriatic fumaric acid derivatives in keratinocyte cultures, Eur. J. Pharmacol., 1994, vol. 270, no. 1, pp. 79–87.

    Google Scholar 

  48. Selamoglu, Z., Sevindik, M., Bal, C., Ozaltun, B., Sen, İ., and Pasdaran, A., Antioxidant, antimicrobial and DNA protection activities of phenolic content of Tricholoma virgatum (Fr.) P. Kumm, Biointerface Res. Appl. Chem., 2020, vol. 10, no. 3, pp. 5500–5506.

    CAS  Google Scholar 

  49. Sevindik, M., Investigation of antioxidant/oxidant status and antimicrobial activities of Lentinus tigrinus, Adv. Pharmacol. Sci., 2018, p. 1718025. https://doi.org/10.1155/2018/1718025

  50. Sevindik, M., The novel biological tests on various extracts of Cerioporus varius, Fresen. Environ. Bull., 2019, vol. 28, no. 5, pp. 3713–3717.

    CAS  Google Scholar 

  51. Sevindik, M., Antioxidant and antimicrobial capacity of Lactifluus rugatus and its antiproliferative activity on A549 cells, Indian J. Tradit. Knowl., 2020, vol. 19, no. 2, pp. 423–427.

  52. Sevindik, M., Anticancer, antimicrobial, antioxidant and DNA protective potential of mushroom Leucopaxillus gentianeus (Quél.) Kotl, Indian J. Exp. Biol., 2021, vol. 59, no. 05, pp. 310–315.

  53. Sevindik, M., and Akata, I., Antioxidant, oxidant potentials and element content of edible wild mushroom Helvella leucopus, Indian J. Nat. Prod. Resour., 2019, vol. 10, no. 4, pp. 266–271.

    CAS  Google Scholar 

  54. Sevindik, M. and Bal, C., Antioxidant, antimicrobial, and antiproliferative activities of wild mushroom, Laeticutis cristata (Agaricomycetes), from Turkey, Int. J. Med. Mushrooms, 2021, vol. 23, no. 11, pp. 85–90.

    Article  Google Scholar 

  55. Sevindik, M., Akgul, H., Akata, I., Alli, H., and Selamoglu, Z., Fomitopsis pinicola in healthful dietary approach and their therapeutic potentials, Acta Aliment., 2017, vol. 46, no. 4, pp. 464–469.

    Article  CAS  Google Scholar 

  56. Sevindik, M., Rasul, A., Hussain, G., Anwar, H., Zahoor, M.K., Sarfraz, I., Kamran, K.S., Akgül, H., Akata, I., and Selamoglu, Z., Determination of anti-oxidative, anti-microbial activity and heavy metal contents of Leucoagaricus leucothites, Pak. J. Pharm. Sci., 2018, vol. 31, no. 5, pp. 2163–2168.

    CAS  Google Scholar 

  57. Sevindik, M., Akgul, H., Selamoglu, Z., and Braidy, N., Antioxidant and antigenotoxic potential of Infundibulicybe geotropa mushroom collected from Northwestern Turkey, Oxid. Med. Cell. Longev., 2020, p. 5620484, https://doi.org/10.1155/2020/5620484

  58. Shim, I.S., Momose, Y., Yamamoto, A., Kim, D.W., and Usui, K., Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants, Plant Growth Regul., 2003, vol. 39, no. 3, pp. 285–292.

    Article  CAS  Google Scholar 

  59. Solak, M. H., Kalmis, E., Saglam, H., and Kalyoncu, F., Antimicrobial activity of two wild mushrooms Clitocybe alexandri (Gill.) Konr. and Rhizopogon roseolus (Corda) TM Fries collected from Turkey, Phytother. Res., 2006, vol. 20, no. 12, pp. 1085–1087.

    Article  Google Scholar 

  60. Song, X., Cai, W., Ren, Z., Jia, L., and Zhang, J., Antioxidant and hepatoprotective effects of acidic-hydrolysis residue polysaccharides from shiitake culinary-medicinal mushroom Lentinus edodes (Agaricomycetes) in mice, Int. J. Med. Mushrooms, 2021, vol. 23, no. 2, pp. 85–96.

    Article  Google Scholar 

  61. Svoboda, L. and Chrastný, V., Levels of eight trace elements in edible mushrooms from a rural area, Food Addit. Contam., 2008, vol. 25, no. 1, pp. 51–58.

    Article  CAS  Google Scholar 

  62. Takó, M., Kerekes, E. B., Zambrano, C., Kotogán, A., Papp, T., Krisch, J., and Vágvölgyi, C., Plant phenolics and phenolic-enriched extracts as antimicrobial agents against food-contaminating microorganisms, Antioxidants, 2020, vol. 9, no. 2, p. 165.

    Article  Google Scholar 

  63. Tel-Çayan, G., Muhammad, A., Deveci, E., Duru, M.E., and Öztürk, M., Isolation, structural characterization, and biological activities of galactomannans from Rhizopogon luteolus and Ganoderma adspersum mushrooms, Int. J. Biol. Macromol., 2020, vol. 165, pp. 2395–2403.

    Article  Google Scholar 

  64. Twieg, B.D., Durall, D.M., and Simard, S.W., Ectomycorrhizal fungal succession in mixed temperate forests, New Phytol., 2007, vol. 176, no. 2, pp. 437–447.

    Article  Google Scholar 

  65. Venturella, G., Ferraro, V., Cirlincione, F., and Gargano, M.L., Medicinal mushrooms: bioactive compounds, use, and clinical trials, Int. J. Mol. Sci., 2021, vol. 22, no. 2, p. 634.

    Article  CAS  Google Scholar 

  66. Wang, Q. and Xie, M., Antibacterial activity and mechanism of luteolin on Staphylococcus aureus, Acta Microbiol. Sin., 2010, vol. 50 no. 9, pp. 1180–1184.

    CAS  Google Scholar 

  67. Wasser, S.P., Book review: “Medicinal Mushrooms: The Essential Guide,” Int. J. Med. Mushrooms, 2021, vol. 23, no. 10, pp. 97–101.

    Article  Google Scholar 

  68. Weng, Y., Lu, J., Xiang, L., Matsuura, A., Zhang, Y., Huang, Q., and Qi, J., Ganodermasides C and D, two new anti-aging ergosterols from spores of the medicinal mushroom Ganoderma lucidum, Biosci. Biotechnol. Biochem., 2011, vol. 75, no. 4, pp. 800–803.

    Article  CAS  Google Scholar 

  69. Wu, W.T., Hsu, T.H., Lee, C.H., and Lo, H.C., Fruiting bodies of Chinese caterpillar mushroom, Ophiocordyceps sinensis (Ascomycetes) alleviate diabetes-associated oxidative stress, Int. J. Med. Mushrooms, 2020, vol. 22, no. 1, pp. 15–29.

    Article  Google Scholar 

  70. Xu, Y.M., Deng, J.Z., Ma, J., Chen, S.N., Marshall, R., Jones, S.H., Johnson, R.K., and Hecht, S.M., DNA damaging activity of ellagic acid derivatives, Bioorg. Med. Chem., 2003, vol. 11, no. 7, pp. 1593–1596.

    Article  CAS  Google Scholar 

  71. Yun, W. and Hall, I.R., Edible ectomycorrhizal mushrooms: challenges and achievements, Can. J. Bot., 2004, vol. 82, no. 8, pp. 1063–1073.

    Article  Google Scholar 

  72. Zhu, F., Qu, L., Fan, W., Qiao, M., Hao, H., and Wang, X., Assessment of heavy metals in some wild edible mushrooms collected from Yunnan Province, China, Environ. Monit. Assess., 2011, vol. 179, no. 1, pp. 191–199.

    Article  CAS  Google Scholar 

  73. Zorofchian Moghadamtousi, S., Abdul Kadir, H., Hassandarvish, P., Tajik, H., Abubakar, S., and Zandi, K., A review on antibacterial, antiviral, and antifungal activity of curcumin, Biomed Res. Int., 2014, p. 186864. https://doi.org/10.1155/2014/186864

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sevindik.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sevindik, M., Bal, C. Chemical Characterization, Antibacterial, Antifungal, Antioxidant and Oxidant Activities of Wild Mushrooms Rhizopogon luteolus and Rhizopogon roseolus. Biol Bull Russ Acad Sci 49 (Suppl 1), S101–S108 (2022). https://doi.org/10.1134/S1062359022130180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022130180

Keywords:

Navigation