Skip to main content
Log in

Compilation of Analytical Techniques for Discrimination of Halophilic Archaea and Bacteria

  • MICROBIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Since discovery, the halophilic archaeal and bacterial strains were studied for their unique compounds such as pigments, proton pumps, compatible solutes and enzymes. Due to their tolerance to extreme salinities several research on using these organisms in various fields is conducted worldwide. Though sequencing is an efficient way of identifying an organism, the difficulty of selecting an optimal archaea primer for identification of archaea is tedious. Therefore, it is essential to discriminate them as bacteria or archaea before going for sequencing studies. There are several conventional and analytical techniques followed in discriminating and identifying the halophilic archaea and bacteria. The present study is an investigation of various conventional and analytical techniques such as morphological observations, biochemical tests, salinity optima, chloramphenicol susceptibility, growth in sodium taurocholate, lipid profiling by FAME analysis, FTIR and sequencing technique used in identifying halophilic community. This study also explains the disadvantages of each analysis and confirms the tests that can be used in the preliminary confirmation of halophilic archaea or bacteria. In the present study, halophilic archaeal and bacterial community from Solar salterns of Kelambakkam, Chennai, Tamilnadu and Tuticorin, Tamilnadu and Salt evaporation tank of tannery, Vellore, Tamilnadu were isolated and studied by various above-mentioned techniques. From the study, it was identified that FAME analysis out of other analyses can be used as preliminary method to identify and also distinguish the halophilic archaea and bacterial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Artari, A., Zur Physiologic der Chlamydomonaden. Versuche und Beobachtungen an Chlamydomonas ehrenbergii Gorosch. und verwandten Formen, Jb. Wiss. Bot., 1913, vol. 52, pp. 410–466.

    Google Scholar 

  2. Ashwini, R., Vijayanand, S., and Hemapriya, J., Photonic potential of haloarchaeal pigment bacteriorhodopsin for future electronics: a review, Curr. Microbiol., 2007, vol. 74, no. 8, pp. 996–1002. https://doi.org/10.1007/s00284-017-1271-5

    Article  CAS  Google Scholar 

  3. Baas Becking, L.G.M., On organisms living in concentrated brine, Tijdschr Ned Dierk Ver Ser III, 1928, vol. 1, pp. 6–9.

    Google Scholar 

  4. Baati, H., Guermazi, S., Gharsallah, N., Sghir, A., and Ammar, E., Novel prokaryotic diversity in sediments of Tunisian multipond solar saltern, Res. Microbiol., 2010, vol. 161, no. 7, pp. 573–582.

    Article  Google Scholar 

  5. Bahram, M., Anslan, S., Hildebrand, F., Bork, P., and Tedersoo, L., Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment, Environ. Microbiol. Rep., 2019, vol. 11, pp. 487–494. https://doi.org/10.1111/1758-2229.12684

    Article  Google Scholar 

  6. Belmok, A., Rodrigues-Oliveira, T., Lopes, F.A.C., Krüger, R.H., and Kyaw, C.M., The influence of primer choice on archaeal phylogenetic analyses based on 16S rRNA gene PCR, Braz. J Biol., 2021, vol. 83.

  7. Bonfa, M.R., Grossman, M.J., Mellado, E., and Durrant, L.R., Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water, Chemosphere, 2011, vol. 84, pp. 1671–1676.

    Article  CAS  Google Scholar 

  8. Boujelben, I., Martinez-Garcia, M., Pelt, J., and Maalej, S., Diversity of cultivable halophilic archaea and bacteria from superficial hypersaline sediments of Tunisian solar salterns, Antonie van Leeuwenhoek, 2014, vol. 106, pp. 675–692, https://doi.org/10.1007/s10482-014-0238-9

    Article  CAS  Google Scholar 

  9. Chaban, B. and Hill, J.E., A ‘universal’ type II chaperon in PCR detection system for the investigation of Archaea in complex microbial communities, ISME J., 2012, vol. 6, no. 2, pp. 430–439.

    Article  CAS  Google Scholar 

  10. Cuadros-Orellana, S., Pohlschröder, M., Grossman, M.J., and Durrant, L.R., Biodegradation of aromatic compounds by a halophilic archaeon isolated from the Dead Sea., Chem. Eng. Trans., 2012, vol. 27, pp. 13–18.

    Google Scholar 

  11. Delgado-García, M., De la Garza-Rodríguez, I., Cruz-Hernández, M.A., Balagurusamy, N., Aguilar, C., and Rodríguez-Herrera, R., Characterization and selection of halophilic microorganisms isolated from Mexican soils, J. Agric. Biol. Sci., 2013, vol. 8, no. 6, pp. 457–464.

    Google Scholar 

  12. Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F., Guindon, S., Lefort, V., Lescot, M., and Claverie, J.M., Phylogeny. fr: robust phylogenetic analysis for the non-specialist, Nucleic Acids Res., 2008, vol 36. no. 2, pp. W465–W469.

    Article  CAS  Google Scholar 

  13. Emerson, D., Agulto, L., Liu, H., and Liu, L., Identifying and characterizing bacteria in an era of genomics and proteomics, BioSci., 2008, vol. 58, no. 10, pp. 925–936.

    Article  Google Scholar 

  14. Enache, M., Itoh, T., Kamekura, M., Popescu, G. and Dumitru, L., Halophilic archaea of Haloferax genus isolated from anthropocentric Telega (Palada) salt lake, Proc. Rom. Acad. B, 2006, vols. 1–2, pp. 11–16.

    Google Scholar 

  15. Franze, M., and Cherkouk, A., Isolation and Characterization of Extreme Halophilic Archaea, HZDR, Institute of Resource Ecology, Annual Report, 2016, р. 52.

  16. Fukushima, T.T., Usami, R., and Kamekura, M., A traditional Japanese-style salt field is a niche for haloarchaeal strains that can survive in 0.5% salt solution, Saline Syst., 2007, vol. 3, no. 1, pp. 1–12.

    Article  Google Scholar 

  17. Gomes, J. and Steiner, W., The biocatalytic potential of extremophiles and extremozymes, Food Technol. Biotechnol., 2004, vol. 42, pp. 223–235.

    CAS  Google Scholar 

  18. Guillén-Cruz, R., Hernández-Castillo, F.D., Gallegos-Morales, G., Rodríguez-Herrera, R., Aguilar-González, C.N., Padrón-Corral, E., and Reyes-Valdés, M.H., Bacillus spp. as biocontrol in an infested soil with Fusarium spp., Rhizoctonia solani Kühn, and Phytophthora capsici Leonian, and its effect on development and yield of pepper crop (Capsicum annuum L.), Rev. Mex. Fitopatol., 2006, vol. 24, no. 2, pp. 105–114.

    Google Scholar 

  19. Güven, K.Y., ah Albayrak, G., Güven, A., and YazÄc, B., FT-IR for rapid discrimination of halophilic archaea and bacteria, J. Phylogenet. Evol. Biol., 2015. https://doi.org/10.4172/2329-9002.1000147

  20. Hassanshahian, M. and Mohamadian, J., Isolation and characterization of Halobacterium salinarum from saline lakes in Iran, Jundishapur J. Microbiol., 2011, vol. 4, no. 1, pp. S59–S65.

    Google Scholar 

  21. Irshad, A., Ahmad, I., and Kim, S.B., Isolation, characterization and antimicrobial activity of halophilic bacteria in foreshore soils, Afr. J Microbiol. Res., 2013, vol. 7, no. 3, pp.164–173.

    Google Scholar 

  22. Johnson, A.M., Thurlow, L.R., Zwenger, S.R., and Gillock, E.T., Partial characterization of two moderately halophilic bacteria from a Kansas salt marsh, Prairie Nat., 2007, vol. 39, no. 1.

  23. Kamekura, M., Oesterhelt, D., Wallace, R., Anderson, P., and Kushner, D.J., Lysis of halobacteria in bacto-peptone by bile acids, Appl. Environ. Microbiol., 1988, vol. 54, no. 4, pp. 990–995.

    Article  CAS  Google Scholar 

  24. Kamekura, M., and Seno, Y., Lysis of halobacteria with bile acids and proteolytic enzymes of halophilic archaeobacteria, General and Applied Aspects of Halophilic Microorganisms, Boston, MA: Springer, 1991, pp. 359–365.

    Google Scholar 

  25. Karthikeyan, P., and Chandrasekaran, M., Studies on Halocin production by haloarchaea Natrinema sp. BTSH10, Doctoral Dissertation, Cochin University of Science and Technology, 2013.

  26. Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., and Glöckner, F.O., Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies, Nucleic Acids Res., 2013, vol. 41, no. 1, e1–e1.

    Article  CAS  Google Scholar 

  27. Kumar, S., Karan, R., Kapoor, S., Singh, S.P., and Khare, S.K., Screening and isolation of halophilic bacteria producing industrially important enzymes, Braz. J. Microbiol., 2012, vol. 43, pp. 1595–1603.

    Article  CAS  Google Scholar 

  28. Kushner, D.J., and Kamekura, M. Physiology of halophilic eubacteria, Halophilic Bact., 1988, pp. 109–138.

    Google Scholar 

  29. Larsen, H., The halobacteria’s confusion to biology, The fourth A.J. Kluyver memorial lecture, Antonie van Leeuwenhoek, 1973, vol. 39, pp. 383–396.

    Article  CAS  Google Scholar 

  30. Litchfield, C.D., Halophiles, J. Ind. Microbiol. Biotechnol., 2002, vol. 28, no. 1, pp. 21–22.

    Article  CAS  Google Scholar 

  31. Mahmoudnia, F., Bahador, N., and Baserisalehi, M., Isolation, characterization and identification of amylase producing halothermophilic isolates from Howz Soltan Lake, Iran, Afr. J. Microbiol. Res., 2013, vol. 7, no. 36, pp. 4483–4490.

    Article  Google Scholar 

  32. Mani, K., Salgaonkar, B.B., and Braganca, J.M., Culturable halophilic archaea at the initial and crystallization stages of salt production in a natural solar saltern of Goa, India, Aquat. Biosyst., 2012, vol. 8, no. 1, pp. 1–8.

    Article  Google Scholar 

  33. Maturrano, L., Santos, F., Rosselló-Mora, R., and Antón, J., Microbial Diversity in Maras Salterns, a Hypersaline Environment in the Peruvian Andes, Appl. Environ. Microbiol., 2006, vol. 72, no. 6, pp. 3887–3895.

    Article  CAS  Google Scholar 

  34. Montalvo-Rodríguez, R., Lopez-Garriga, J., Vreeland, R.H., Oren, A., Ventosa, A., and Kamekura, M., Haloterrigena thermotoleran ssp. nov., a halophilic archaeon from Puerto Rico, Int. J. Syst. Evol. Microbiol., 2000, vol. 50, no. 3, pp. 1065–1071.

  35. Moschetti, G., Aponte, M., Blaiotta, G., Casaburi, A., Chiurazzi, M., Ventorino, V., and Villani, F., Characterization of halophilic Archaea isolated from different hypersaline ecosystems, Ann. Microbiol., 2006, vol. 56, no. 2, pp. 119–127.

    Article  CAS  Google Scholar 

  36. Oh, D., Porter, K., Russ, B., Burns, D., and Dyall-Smith, M., Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds, Extremophiles, 2010, vol. 14, no. 2, pp. 161–169.

    Article  Google Scholar 

  37. Oren, A., and Litchfield, D.C., A procedure for the enrichment and isolation of Halobacterium, FEMS Microbiol. Letts., 1999, vol. 173, pp. 353–358.

    Article  CAS  Google Scholar 

  38. Oren, A., Duker, S., and Ritter, S., The polar lipid composition of Walsby’s square bacterium, FEMS Microbiol. Lett., 1996, vol. 138, nos. 2–3, pp. 135–140.

    Article  CAS  Google Scholar 

  39. Oren, A., The dying Dead Sea: The microbiology of an increasingly extreme environment, Lake Reserv. Res. Manage., 2010, vol. 15, no. 3, pp. 215–222.

    Article  CAS  Google Scholar 

  40. Ozcan, B., Cokmus, C., Coleri, A., and Caliskan, M., Characterization of extremely halophilic archaea isolated from saline environment in different parts of Turkey, Microbiol., 2006, vol. 75, no. 6, pp. 739–746.

    Article  CAS  Google Scholar 

  41. Sahay, H., Singh, S., Kaushik, R., Saxena, A., and Arora, D., Characterization of halophilic bacteria from environmental samples from the brackish water of Pulicat Lake, India, Biologia, 2011, vol. 66, no. 5, pp. 741–747.

    Article  CAS  Google Scholar 

  42. Sarma, S.D. and Sarma, P.D., Halophiles, Chichester: Wiley, 2012. https://doi.org/10.1002/9780470015902.a0000394.pub3

  43. Sasser, M., Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC–FAME), Technical Note no. 101, New York, NY: MIDI-Inc., 2006.

    Google Scholar 

  44. Semenov, M.V., Manucharova, N.A., and Stepanov, A.L., Distribution of metabolically active prokaryotes (Archaea and Bacteria) throughout the profiles of chernozem and brown semidesert soil, Eurasian Soil Sci., 2016, vol. 49, no. 2, pp. 217–225.

    Article  CAS  Google Scholar 

  45. Sun, D.L., Jiang, X., Wu, Q.L., and Zhou, N.Y., Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity, Appl. Environ. Microbiol., 2013, vol. 79, no. 19, pp. 5962–5969. https://doi.org/10.1128/AEM.01282-13

    Article  CAS  Google Scholar 

  46. Surve, V.V., Patil, M.U., and Dharmadhikari, S.M., FAME and 16S rDNA sequence analysis of halophilic bacteria from solar salterns of Goa: a comparative study, Int. J. Sci. Res. Publ., 2012, vol. 2, no. 8, pp. 1–8.

    Google Scholar 

  47. Vijayanand, S., Hemapriya, J., Selvin, J., and Kiran, S., Production and optimization of haloalkaliphilic protease by an extremophile—Halobacterium sp. JS1, isolated from thalassohaline environment, Afr. J. Basic Appl. Sci., 2009, vol. 1, nos. 3–4, pp. 49–54.

    Google Scholar 

  48. Woese, C.R. and Fox, G.E., Phylogenetic structure of the prokaryotic domain: the primary kingdoms, Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, pp. 5088–5090.

    Article  CAS  Google Scholar 

  49. Yildiz, E., Ozcan, B., and Caliskan, M., Isolation, characterization and phylogenetic analysis of halophilic Archaea from a salt mine in central Anatolia (Turkey), Pol. J. Microbiol., 2012, vol. 61, no. 2, pp. 111–117.

    Article  CAS  Google Scholar 

  50. Yim, K.J., Kwon, J., Cha, I.T., Oh, K.S., Song, H.S., Lee, H.W., Rhee, J.K., Song, E., Rho, J.R., Seo, M.L., Choi, J.S., Choi, H.J., Lee, S.J., Nam, Y.D., and Roh, S.W., Occurrence of viable, red-pigmented haloarchaea in the plumage of captive flamingos, Sci. Rep., 2015, vol. 5, no. 1, pp. 1–10. https://doi.org/10.1038/srep16425

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwini Ravi.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashwini Ravi, Vijayanand, S. & Hemapriya, J. Compilation of Analytical Techniques for Discrimination of Halophilic Archaea and Bacteria. Biol Bull Russ Acad Sci 49 (Suppl 1), S39–S50 (2022). https://doi.org/10.1134/S1062359022130167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022130167

Keywords:

Navigation