Skip to main content
Log in

Isolation of Biological Control Agents and Biotechnological Bacteria from Aquatic Insect Gut Microbiota (Coleoptera: Helophoridae, Hydrophilidae)

  • MICROBIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Insects have a very large impact among living organisms, both in terms of numbers and efficiency. They are the first actor in pollination, ecological balance and the food chain pyramid. Since gut microbiota plays an important role in the reproduction and spread of living organisms in the food chain, gut microbiota is useful for detection of bacteria to be used as biological control agents. Here, we analysed microbiota (bacteria) of the gut in aquatic Coleoptera (Helephoridae and Hidrophilidae family) by using microbiological and molecular methods. Various conventional methods were used for the complete and accurate identification of bacterial isolates. Gut microbiota bacteria from 17 species of aquatic insects were microbiologically isolated. Using culture-dependent methods, 34 species and 31 different genera were isolated from gut of 17 aquatic insect species (Coleoptera: Helephoridae and Hydrophilidae). Further studies are needed to determine the number and proportion of these bacteria species within total bacterial content for evaluation of biological control and biotechnological uses. As a result of the isolation of bacteria with biotechnological importance, these bacteria will be used repeatedly in biotechnology and biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Abdel-El-Haleem, D., Acinetobacter: environmental and biotechnological applications, Afr. J. Biotechnol., 2003, vol. 2, pp. 71–74.

    Article  Google Scholar 

  2. Al-Fatlawy, H.N.K. and Al-Hadrawy, H.A., Isolation and characterization of A. hydrophila from the Al-Jadryia River in Baghdad (Iraq), Am. J. Educ. Res., 2014, vol. 2, no. 8, pp. 658–662.

    Article  Google Scholar 

  3. Akdogan, H.A. and Pazarlioglu, N.K., Fluorene biodegradation by P. ostreatus—Part I: biodegradation by free cells, Process Biochem., 2011, vol. 46, pp. 834–839.

    Article  CAS  Google Scholar 

  4. Bacon, C.W. and Hinton, D.M., Endophytic and biological control potential of Bacillus mojavensis and related species, Biol. Control, 2002, vol. 23, no. 3, pp. 274–284.

    Article  CAS  Google Scholar 

  5. Baris, O., Demir, T., and Gulluce, M., Investigation of in vitro mineral forming bacterial isolates from supragingival calculus, Niger. J. Clin. Pract., 2016, vol. 20, pp. 1571–1575.

    Google Scholar 

  6. Bekker, A., Jooste, P., Steyn, L., Bothma, C., and Hugo, A., Lipid breakdown and sensory analysis of milk inoculated with Chryseobacterium joostei or Pseudomonas fluorescens, Int. Dairy J., 2016, vol. 52, pp. 101–106.

    Article  CAS  Google Scholar 

  7. Bektaş, M., Orhan, F., Erman, Ö.K., and Barış, Ö., Bacterial microbiota on digestive structure of Cybister lateralimarginalis torquatus (Fischer von Waldheim, 1829) (Dytiscidae: Coleoptera), Arch. Microbiol., 2021a, vol. 203, pp. 635–641.

    Article  Google Scholar 

  8. Bektaş, M., Orhan, F., and Barış, Ö., A new approach and a model study in a floating Island microbial biodiversity and endosymbionts on digestive structure of an aquatic insect, Fresenius Environ. Bull., 2021b, vol. 30, pp. 13250–13263.

    Google Scholar 

  9. Bhagwat, A., Nandanwar, Y.S., Warke, R., and Annapure, U.S., In vitro assessment of physiological properties of Enterococcus strains of human origin for possible probiotic use, Asian J. Pharm. Clin. Res., 2019, vol. 12, no. 6, pp. 194–203.

    Article  CAS  Google Scholar 

  10. Bhosale, H., Shaheen, U., and Kadam, T., Characterization of a hyperthermostable alkaline lipase from Bacillus sonorensis 4R, Enzyme Res., 2016, article ID 4170684.

  11. Biedendieck, R., Knuuti, T., Moore, S.J., and Jahn, D., The “beauty in the beast”—the multiple uses of Priestia megaterium in biotechnology, Appl. Microbiol. Biotechnol., 2021, vol. 105, pp. 5719–5737.

    Article  CAS  Google Scholar 

  12. Bordini, I., Ellsworth, P.C., Naranjo, S.E., and Fournier, A., Novel insecticides and generalist predators support conservation biological control in cotton, Biol. Control, 2021, vol. 154, no. 104502.

  13. Cohen, S.N. and Chang, A.C.Y., Recircularization and autonomous replication of a sheared R-factor DNA segment in Escherichia coli transformants, Proc. Natl. Acad. Sci. U. S. A., 1973, vol. 70, no. 5, pp. 1293–1297.

    Article  CAS  Google Scholar 

  14. Cristobal-Cueto, P., García-Quintanilla, A., Esteban, J., and García-Quintanilla, M., Phages in food industry biocontrol and bioremediation, Antibiotics, 2021, vol. 10, p. 786.

    Article  CAS  Google Scholar 

  15. Crump, N.S., Cother, E.J., and Ash, G.J., Clarifying the nomenclature in microbial weed control, Biocontrol Sci. Technol., 1999, vol. 9, pp. 89–97.

    Article  Google Scholar 

  16. Cucini, C., Leo, C., Vitale, M., Frati, F., Carapelli, A., and Nardi, F., Bacterial and fungal diversity in the gut of polystyrene-fed Alphitobius diaperinus (Insecta: Coleoptera), Anim. Gene, 2020, vol. 17, no. 18.

  17. Dadaşoğlu, F. and Şahin, F., Bakterilerin Yüzük Kelebeği Malacosoma neustria L. (Lepidoptera: Lasiocampidae)’nın Biyolojik Mücadelesinde Kullanımı, Atatürk Üniv. Ziraat Fak. Dergisi, 2013, vol. 41, no. 2, pp. 97–104.

    Google Scholar 

  18. Das, S., Behera, B.C., Mohapatra, R.K., Pradhan, B., Sudarshan, M., Chakraborty, A., and Thatoi, H., Reduction of hexavalent chromium by Exiguobacterium mexicanum isolated from chromite mines soil, Chemosphere, 2021, vol. 282, p. 131135.

    Article  CAS  Google Scholar 

  19. De Vuyst, L. and Vandamme, E.J., Nisin, a lantibiotic produced by Lactococcus lactis subsp. lactis: properties, biosynthesis, fermentation and application, in Bacteriocins of Lactic Acid Bacteria, De Vuyst, L. and Vandamme, E.J., Eds., Springer Science + Business Media, 1994, pp. 151–221.

  20. Dutta, S. and Ray, L., Production and characterization of an alkaline thermostable crude lipase from an isolated strain of Bacillus cereus C7, Appl. Biochem. Biotechnol., 2009, vol. 159, pp. 142–154.

    Article  CAS  Google Scholar 

  21. Ebmeyer, S., Kristiansson, E., and Larsson, D.G.J., The mobile FOX AmpC beta-lactamases originated in Aeromonas allosaccharophila, Int. J. Antimicrob. Agents, 2019, vol. 54, pp. 798–802.

    Article  CAS  Google Scholar 

  22. Eilenberg, J., Hajek, A., and Lomer, C., Suggestions for unifying the terminology in biological control, BioControl, 2001, vol. 46, no. 38, p. 400.

    Article  Google Scholar 

  23. Engel, P. and Moran, N.A., The gut microbiota of insects—diversity in structure and function, FEMS Microbiol. Rev., 2013, vol. 37, pp. 699–735.

    Article  CAS  Google Scholar 

  24. Evariste, L., Barret, M., Mottier, A., Mouchet, F., Gauthier, L., and Pinelli, E., Gut microbiota of aquatic organisms: a key endpoint for ecotoxicological studies, Environ. Pollut., 2019, vol. 248, pp. 989–999.

    Article  CAS  Google Scholar 

  25. Goeddel, D.V., Kleid, D.G., Bolivar, F., Heyneker, H.I., Yansura, D.G., Crea, R., Hirosef, T., Kraszewskit, A., Itakuraf, K., and Riggst, A.D., Expression in Escherichia coli of chemically synthesized genes for human insulin, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, no. 1, pp. 106–110.

    Article  CAS  Google Scholar 

  26. Goodfellow, M. and Williams, E., New strategies for the selective isolation of industrially important bacteria, Biotechnol. Genet. Eng. Rev., 1986, vol. 4, no. 1, pp. 213–262.

    Article  CAS  Google Scholar 

  27. Guo, G., Ekama, G.A., Wang, Y., Dai, J., Biswal, K.B., Chen, G., and Wu, D., Advances in sulfur conversion-associated enhanced biological phosphorus removal in sulfate-rich wastewater treatment: a review, Bioresour. Technol., 2019, vol. 285, pp. 1–12.

    Article  Google Scholar 

  28. Halpern, M., Shaked, T., Pukall, R. and Schumann, P., Leucobacter chironomi sp. nov., a chromate resistant bacterium isolated from a chironomid egg mass, Int. J. Syst. Evol. Microbiol., 2019, vol. 59, pp. 665–670.

    Article  Google Scholar 

  29. Heddema, E., Janssen, F., and Westreenen, H.V., A case of Ignatzschineria bacteraemia in an unconscious man from the Netherlands, JMM Case Rep., 2016, vol. 3, no. 3, pp. 1–4.

    Article  Google Scholar 

  30. Hokkanen, H. and Pimentel, D., New approach for selecting biological control agents, Can. Entomol., 2012, vol. 116, p. 8.

    Google Scholar 

  31. Huang, L., Xie, J., Lv, B.Y., Shi, X.F., Li, G.Q., Liang, F.L., and Lian, J., Optimization of nutrient component for diesel oil degradation by Acinetobacter beijerinckii ZRS, Mar. Pollut. Bull., 2013, vol. 76, pp. 325–332.

    Article  CAS  Google Scholar 

  32. Huang, L., Chen, Z.Q., Wen, Y., Ji, Z., Wu, D.J., and Lee, J., Toward flexible regulation of polyhydroxyalkanoate composition based on substrate feeding strategy: insights into microbial community and metabolic features, Bioresour. Technol., 2020, vol. 296, article ID 122369.

    Article  CAS  Google Scholar 

  33. Huang, Y., Wang, X., Yang, J., Lu, S., Lai, X.H., Jin, D., Pu, J., Huang, Y., Ren, Z., and Zhu, W., Apibacter raozihei sp. nov. isolated from bat feces of Hipposideros and Taphozous spp., Int. J. Syst. Evol. Microbiol., 2020, vol. 70, pp. 611–617.

    Article  CAS  Google Scholar 

  34. Humann-Guilleminot, S., Binkowski, L., Jenni Hilke, G., Glauser, G., and Helfenstein, F., A nation-wide survey of neonicotinoid insecticides in agricultural land with implications for agri-environment schemes, J. Appl. Ecol., 2009, vol. 56, pp. 1502–1514.

    Article  Google Scholar 

  35. Iancu, L., Necula-Petrareanu, G., and Purcarea, C., Potential bacterial biomarkers for insect colonization in forensic cases: preliminary quantitative data on Wohlfahrtiimonas chitiniclastica and Ignatzschineria indica dynamics, Sci. Rep., 2020, vol. 10, p. 8497.

    Article  CAS  Google Scholar 

  36. Inan, N., Türkiye' deki Eurygaster integriceps populasyonlarında Serratia marcescens bakterisinin yaygınlığının belirlenmesi, Yüksek lisans tezi, Ankara: Ankara Üniversitesi Fen Bilimleri Enstitüsü, 2020, no. 59.

  37. İskender, N.A. and Algur, Ö.F., Sekiz Dişli Kabuk Böceği (Ips typographus, Coleopterana: Scolytidae)’nin Bakteriya Florası Üzerine Araştırmalar, Kafkas Üniv Fen Bil. Enst. Derg., 2009, vol. 2, no. 1, pp. 67–76.

    Google Scholar 

  38. Janarthanan, O.M., Laycock, B., Montano-Herrera, L., Lu, Y., Arcos-Hernandez, M.V., Werker, A., and Pratt, S., Fluxes in PHA-storing microbial communities during enrichment and biopolymer accumulation processes, New Biotechnol., 2016, vol. no. 33, pp. 61–72.

  39. Jang, S. and Kikuchi, Y., Impact of the insect gut microbiota on ecology, evolution, and industry, Curr. Opin. Insect Sci., 2020, vol. 41, pp. 33–39.

    Article  Google Scholar 

  40. Jiang, Y., Zhang, Z., and Zhang, X., Co-biodegradation of pyrene and other PAHs by the bacterium Acinetobacter johnsonii, Ecotoxicol. Environ. Saf., 2018, vol. 163, pp. 465–470.

    Article  CAS  Google Scholar 

  41. Jiang, N., Luo, L., Xing, W., Li, T.L., Yuan, D., Xu, G.L., Li, W.T., Ma, Z.H., In, L.Y., and Ji, M., Generation and immunity effect evaluation of biotechnology-derived T. Aeromonas veronii ghost by PhiX174 gene E-mediated inactivation in koi (Cyprinus carprio koi), Fish Shellfish Immunol., 2019, vol. 86, pp. 327–334.

    Article  CAS  Google Scholar 

  42. Jiang, D., Tan, M., Guo, Q. and Yan, S., Transfer of heavy metal along food chain: a mini-review on insect susceptibility to entomopathogenic microorganisms under heavy metal stress, Pest Manage. Sci., 2021, vol. 77, no. 3, pp. 1115–1120.

    Article  CAS  Google Scholar 

  43. Jurado, V., Gonzalez-Pimentel, J.L., Hermosin, B., and Saiz-Jimenez, C., Biodeterioration of Salón de Reinos, Museo Nacional del Prado, Madrid, Spain, Appl. Sci., 2021, vol. 11, p. 8858.

    Article  CAS  Google Scholar 

  44. Kabaluk, J.T., Goettel, M.S., Svircev, A.M. and Woo, S.G., The use and regulation of microbial pesticides in representative jurisdictions worldwide, IOBC Global, 2010, p. 99. www.IOBC-Global.org.

    Google Scholar 

  45. Kang, S.M., Joo, G.J., Hamayun, M., Na, C.I., Shin, D.H., Kim, H., Hong, J.K., and Lee, I.J., Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth, Biotechnol. Lett., 2009, vol. 31, pp. 277–281.

    Article  CAS  Google Scholar 

  46. Kwong, W.K., Steele, M.I., and Moran, N.A., Genome sequences of Apibacter spp., gut symbionts of Asian honey bees, Genome Biol. Evol., 2018, vol. 10, no. 4, pp. 1174–1179.

    Article  CAS  Google Scholar 

  47. Lacey, L., Frutos, R., Kaya, H.K., and Vail, P., Insect pathogens as biocontrol agents: do they have a future?, Biol. Control, 2021, vol. 21, pp. 230–248.

    Article  Google Scholar 

  48. Liberti, J. and Engel, P., The gut microbiota–brain axis of insects, Curr. Opin. Insect Sci., 2020, vol. 39, pp. 6–13.

    Article  Google Scholar 

  49. Liu, S., Zheng, N., Zhao, S., and Wang, J., Exploring the diversity of active ureolytic bacteria in the rumen by comparison of cDNA and gDNA, Animals, 2020, vol. 10, p. 11.

    Article  CAS  Google Scholar 

  50. Logeshwaran, P., Krishnan, K., Naidu, R., and Megharaj, M., Purification and characterization of a novel fenamiphos hydrolysing enzyme from Microbacterium esteraromaticum MM1, Chemosphere, 2020, vol. 252, article ID 126549.

    Article  CAS  Google Scholar 

  51. López-Domínguez, C.M., Ramírez-Sucre, M.O., and Rodríguez-Buenfil, I.M., Enzymatic hydrolysis of Opuntia ficus-indica cladode by Acinetobacter pittii and alcohol fermentation by Kluyveromyces marxianus: pH, temperature and microorganism effect, Biotechnol. Rep., 2019, vol. 24, article ID e00384.

    Article  Google Scholar 

  52. Martì, S., Rodríguez-Baño, J., Catel-Ferreira, M., Jouenne, T., Vila, J., and Seifert, H., Biofilm formation at the solid–liquid and air-liquid interfaces by Acinetobacter species, BMC Res. Notes, 2011, vol. 1186, no. 1756-0500, pp. 4–5.

  53. Martínez-Hidalgo, P., Flores-Félix, J.D., Sánchez-Juanes, F., Rivas, R., Mateos, P.F., Santa Regina, I., Peix, Á., Martínez-Molina, E., Igual, J.M., and Velázquez, E., Identification of canola roots endophytic bacteria and analysis of their potential as biofertilizers for canola crops with special emphasis on sporulating bacteria, Agronomy, 2021, vol. 11, p. 1796.

    Article  Google Scholar 

  54. Mason, C.J., Complex relationships at the intersection of insect gut microbiomes and plant defences, J. Chem. Ecol., 2020, vol. 46, no. 8, pp. 793–807.

    Article  CAS  Google Scholar 

  55. Meddeb-Mouelhi, F., Moisan, J.K., Bergeron, J., Daoust, B., and Beauregard, M., Structural characterization of a novel antioxidant pigment produced by a photochromogenic Microbacterium oxydans strain, Appl. Biochem. Biotechnol., 2016, vol. 180, pp. 1286–1300.

  56. Nofouzi, K., Sheikhzadeh, N., Varshoie, H., Sharabyani, S.K., Jafarnezhad, M., Shabanzadeh, S., Ahmadifar, E., Stanford, J., and Shahbazfar, A., A beneficial effect of killed Tsukamurella inchonensis on rainbow trout (Oncorhynchus mykiss) growth, intestinal histology, immunological, and biochemical parameters, Fish Physiol. Biochem., 2019, vol. 45, pp. 209–217.

    Article  CAS  Google Scholar 

  57. Neelkant, K.S., Shankar, K., Jayalakshmi, S.K., and Sreeramulu, K., Optimization of conditions for the production of lignocellulolytic enzymes by Sphingobacterium sp. ksn-11 utilizing agro-wastes under submerged condition, Prep. Biochem. Biotechnol., 2019, vol. 49, pp. 927–934.

    Article  CAS  Google Scholar 

  58. Nogales, J., Mauller, J., Gudmundsson, S., Canalejo, F.J., and Duque, E., High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities, Environ. Microbiol., 2020, vol. 22, no. 1, pp. 255–269.

    Article  CAS  Google Scholar 

  59. Nor, F.H.M., Abdullah, S., Yuniarto, A., Ibrahim, Z., Nor, M.H.M., and Hadibarata, T., Production of lipopeptide biosurfactant by Kurthia gibsonii KH2 and their synergistic action in biodecolourisation of textile wastewater, Environ. Technol. Innov., 2021, vol. 22, article ID 101533.

  60. Ogugbue, C.J. and Sawidis, T., Bioremediation and detoxification of synthetic waste water containing triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluent, Biotechnol. Res. Int., 2011, vol. 1, p. 11.

    Google Scholar 

  61. Ottoni, J.R., Bernal, S.P.F., Marteres, T.J., Luiz, F.N., Dos Santos, V.P., Mari, Â.G., Somer, J.G., Oliveira, V.M., and Passarini, M.R.Z., Cultured and uncultured microbial community associated with biogas production, Arch. Microbiol., 2021, vol. 1.

  62. Pan, X.Y. and Zhang, F., Advances in biological control of the German cockroach, Blattella germanica (L.), Biol. Control, 2020, vol. 142, pp. 1–12.

    Article  Google Scholar 

  63. Park, S.Y., Lim, S.R., Son, J.S., Kim, H.K., Yoon, S.W., Jeong, D.G., Lee, M., Lee, J.R., Lee, D., and Kim, J.H., Complete genome sequence of Aeromonas rivipollensis KN-Mc-11N1, isolated from a wild nutria (Myocastor coypus) in South Korea, Microbiol. Resour. Announc., 2018, vol. 7, pp. e00907–e00918.

    Article  Google Scholar 

  64. Pawar, K.D., Banskar, S., Rane, S.D., Charan, S.S., Kulkarni, G.J., Sawant, S.S., and Shouche, Y.S., Bacterial diversity in different regions of gastrointestinal tract of giant African snail (Achatina fulica), MicrobiologyOpen, 2012, vol. 1, no. 4, pp. 415–426.

    Article  Google Scholar 

  65. Persinoti, G.F., Paixão, D.A.A., Bugg, T.D.H., and Squina, F.M., Genome sequence of Lysinibacillus sphaericus, a lignin-degrading bacterium isolated from municipal solid waste soil, Genome Announc., 2018, vol. 6, pp. 1–2.

    Article  Google Scholar 

  66. Pindi, P.K., Ashwitha, K., and Rani, A.S., Chryseomicrobium palamuruense sp. nov., a haloalkalitolerant bacterium isolated from a sediment sample, Int. J. Syst. Evol. Microbiol., 2018, vol. 66, pp. 3731–3736.

    Article  Google Scholar 

  67. Prescott, H., Laboratory Exercises in Microbiology, McGraw-Hill, New York, USA, 2002.

    Google Scholar 

  68. Purohit, A., Rai, S.K., Chownk, M., Sangwan, R.S., and Yadav, S.K., Xylanase from Acinetobacter pittii MASK 25 and developed magnetic cross-linked xylanase aggregate produce predominantly xylopentose and xylohexose from agro biomass, Bioresour. Technol., 2017, vol. 244, pp. 793–799.

    Article  CAS  Google Scholar 

  69. Sahoo, M., Vishwakarma, S., Panigrahi, C., and Kumar, J., Nanotechnology: current applications and future scope in food, Food Front., 2021, vol. 2, no. 3, p. 22.

    Article  Google Scholar 

  70. Shemshura, O.N., Shemsheyeva, Z.N., Sadanov, A.K., Alimzhanova, M.B., Daugaliyeva, S.T., Mombekova, G.A., and Rahmetova, Z.K., Plant growth promotion by volatile organic compounds produced by Chryseobacterium rhizoplanae isolated from Vigna radiate, Ecol. Environ. Conserv., 2019, vol. 25, no. 2, pp. 807–812.

    Google Scholar 

  71. Singh, B.K., Walker, A., Morgan, J.A.W., and Wright, D.J., Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils, Appl. Environ. Microbiol., 2004, vol. 8, pp. 4855–4863.

    Article  Google Scholar 

  72. Sundh, I. and Eilenberg, J., Why is the authorization of microbial biological control agents slower in the EU than in comparable jurisdictions?, Pest Manage. Sci., 2020, vol. 10, pp. 1002–6177.

    Google Scholar 

  73. Strauch, E., Voigt, I., Broll, H., and Appel, B., Use of a plasmid of Yersinia enterocolitica biogroup 1A strain for the construction of cloning vectors, J. Biotechnol., 2000, vol. 79, pp. 63–72.

    Article  CAS  Google Scholar 

  74. Stampfer, W., Kosjek, B., Moitzi, C., Kroutil, W., Faber, K., and Angew, K., Biocatalytic asymmetric hydrogen transfer employing Rhodococcus ruber DSM 44541, J. Org. Chem., 2003, vol. 68, pp. 402–406.

    Article  CAS  Google Scholar 

  75. Theisen, M. and Liao, J.C., Industrial biotechnology: Escherichia coli as a host, in Industrial Biotechnology, Wittmann, C. and Liao, J.C., Eds., 2016. https://onlinelibrary.wiley.com/doi/10.1002/9783527807796.ch5

  76. Thys, R.C.S., Lucas, F.S., Riffel, A., Heeb, P., and Brandelli, A., Characterization of a protease of a feather-degrading Microbacterium species, Lett. Appl. Microbiol., 2004, vol. 39, pp. 181–186.

    Article  CAS  Google Scholar 

  77. Topić Popović, N., Čož-Rakovac, R., and Strunjak-Perović, I., Commercial phenotypic tests (API 20E) in diagnosis of fish bacteria, Vet. Med., 2007, vol. 52, no. 2, pp. 49–53.

    Article  Google Scholar 

  78. Wan, C., Zhao, X.Q., Guo, S.L., Asraful Alam, M., and Bai, F.W., Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation, Bioresour. Technol., 2013, vol. 135, pp. 207–212.

    Article  CAS  Google Scholar 

  79. Ze, X., Ben David, Y., Laverde-Gomez, J.A., Dassa, B., Sheridan, P.O., Duncan, S.H., Louis, P., Henrissat, B., Juge, N., Koropatkin, N., Bayer, M., and Flinta, H.J., Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic Firmicutes bacterium, Ruminococcus bromii, mBio, 2015, vol. 6(e), pp. 01058–01015.

Download references

Funding

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) with financial support (Tubitak Project no. 119Z236). The authors would like to thank the Scientific and Technological Research Council of Turkey (TUBITAK) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Bektas.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmet Bektas, Orhan, F. & Baris, O. Isolation of Biological Control Agents and Biotechnological Bacteria from Aquatic Insect Gut Microbiota (Coleoptera: Helophoridae, Hydrophilidae). Biol Bull Russ Acad Sci 49, 596–608 (2022). https://doi.org/10.1134/S1062359022060036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022060036

Keywords:

Navigation