Skip to main content
Log in

Risk Assessment of Tetraconazole Fungicide at the Molecular Level in Hordeum vulgare L.

  • PLANT PHYSIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

In this study, physiological and molecular changes caused by different concentrations of tetraconazole were investigated in barley. The analyzes were carried out 7 days after the application of tetraconazole to the seedlings. In physiological analysis, root and shoot length, water loss rate (WLR) and ion leakage were assessed. No significant differences (p > 0.05) were detected overall in tetraconazole treated plantlets. Similarly, increased concentrations of tetraconazole led to no scientifically significant differences on experiment sets. WRKY9, WRKY33 and WRKY34 genes expression showed no alteration in response to increased concentrations of tetraconazole. Tetraconazole also did not induce DNA alterations with 91.13% GTS and DNA methylation polymorphism ratios, with ranges from 5.7 to 6.8% based on RAPD and CRED-RA, respectively. This is the first report that tetraconazole has no negative effects on barley at the physiological and molecular level and seems to be safe and friendly fungicide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Akhavan, A., Strelkov, S.E., Kher, S.V., Askarian, H., Tucker, J.R., Legge, W.G.A., and Turkington, T.K., Resistance to Pyrenophora teres f. teres and P. teres f. maculata in Canadian barley genotypes, Crop Sci., 2017, vol. 57, pp. 151–160. https://doi.org/10.2135/cropsci2016.05.0385

    Article  Google Scholar 

  2. Bockus, W.W., Bowden, R.L., Hunger, R.M., Morrill, W.L., Murray, T.D., and Smiley, R.W., Compendium of Wheat Diseases and Pests, Minnesota: APS Press, 2010, 3rd ed.

    Book  Google Scholar 

  3. Cho, Y.W., Park, E.H., and Lim, C.J., Catalase, glutathione S-transferase and thioltransferase respond differently to oxidative stress in Schizosaccharomyces pombe, J. Biochem. Mol. Biol., 2000, vol. 33, pp. 344–348.

    CAS  Google Scholar 

  4. Ciolkowski, I., Wanke, D., Birkenbihl, R.P., and Somssich, I.E., Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function, Plant Mol. Biol., 2008, vol. 68, pp. 81–92. https://doi.org/10.1007/s11103-008-9353-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Compendium of Barley Diseases, Mathre, D.E., Ed., Minnesota, USA: APS Press, 1982.

    Google Scholar 

  6. Doyle, J.J. and Doyle, J.L., A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull., 1987, vol. 19, pp. 11–15.

    Google Scholar 

  7. Dreiseitl, A., The Hordeum vulgare sub sp. SpontaneumBlumeria graminis f. sp. Hordei pathosystem: its position in resistance research and breeding applications, Eur. J. Plant Pathol., 2014, vol. 138, pp. 561–568. https://doi.org/10.1007/s10658-013-0266-8

    Article  Google Scholar 

  8. Eulgem, T. and Somssich, I.E., Networks of WRKY transcription factors in defense signaling, Curr. Opin. Plant Biol., 2007, vol. 10, pp. 366–371. https://doi.org/10.1016/j.pbi.2007.04.020

    Article  CAS  PubMed  Google Scholar 

  9. Fischer, W., Christ, U., Baumgarten, M., Erismann, K.M., and Mosinger, E., Pathogenesis-related proteins of tomato. II. Biochemical and immunological characterization, Physiol. Mol. Plant Pathol., 1989, vol. 35, pp. 67–83. https://doi.org/10.1016/0885-5765(89)90008-8

    Article  CAS  Google Scholar 

  10. Gilley, A. and Fletcher, R.A., Relative efficacy of paclobutrazol, propiconazole and tetraconazole as stress protectants in wheat seedlings, Plant Growth Regul., 1997, vol. 21, pp. 169–175. https://doi.org/10.1023/A:1005804717016

    Article  CAS  Google Scholar 

  11. Gürel, F., Öztürk, N.Z., Yörük, E., Uçarlı, C., and Poyraz, N., Comparison of expression patterns of selected drought-responsive genes in barley (Hordeum vulgare L.) under shock-dehydration and slow drought treatments, Plant Growth Regul., 2016, vol. 80, pp. 83–193. https://doi.org/10.1007/s10725-016-0156-0

    Article  CAS  Google Scholar 

  12. Kumar, M., Chand, R., and Shah, K., Evidences for growth-promoting and fungicidal effects of low doses of tricyclazole in barley, Plant Physiol. Biochem., 2016, vol. 103, pp. 176–182. https://doi.org/10.1016/j.plaphy.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  13. Kwon, C., Bednarek, P., and Schulze-Lefert, P., Secretory pathways in plant immune responses, Plant Physiol., 2008, vol. 147, pp. 1575–1583. https://doi.org/10.1104/pp.108.121566

  14. Livak, J.K. and Schmitting, T.D., Analysis of relative gene expression data using real time quantitative PCR and the 2- ΔΔCT method, Methods, 2001, vol. 25, pp. 402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  15. Marzin, S., Hanemann, A., Sharma, S., Hensel, G., Kumlehn, J., Schweizer, G., and Röder, M.S., Are pectin esterase inhibitor genes involved in mediating resistance to Rhynchosporium commune in barley, PLoS One, 2016, vol. 11, article ID e0150485. https://doi.org/10.1371/journal.pone.0150485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nardemir, G., Agar, G., Arslan, E., and Erturk, F.A., Determination of genetic and epigenetic effects of glyphosate on Triticum aestivum with RAPD and CRED-RA techniques, Theor. Exp. Plant Physiol., 2015, vol. 27, pp. 131–139. https://doi.org/10.1007/s40626-015-0039-1

    Article  Google Scholar 

  17. Petit, A.N., Fontaine, F., Vatsa, P., Clément, C., and Vaillant-Gaveau, N., Fungicide impacts on photosynthesis in crop plants, Photosynth. Res., 2012, vol. 111, pp. 315–326. https://doi.org/10.1007/s11120-012-9719-8

    Article  CAS  PubMed  Google Scholar 

  18. Rushton, P.J., Somssich, I.E., Ringler, P., and Shen, Q.J., WRKY transcription factors, Trends Plant Sci., 2010, vol. 15 pp. 247–258. https://doi.org/10.1016/j.tplants.2010.02.006

    Article  CAS  PubMed  Google Scholar 

  19. Suprunova, T., Krugman, T., Fahima, T., Chen, G., Shams, I., Korol, A., and Nevo, E., Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit, Plant, Cell Environ., 2004, vol. 27, pp. 1297–1308. https://doi.org/10.1111/j.1365-3040.2004.01237.x

    Article  CAS  Google Scholar 

  20. Tietjen, K., Contribution of plant responses to efficacy of fungicides—a perspective, in Modern Fungicides and Antifungal Compounds, Deising, H.B., Fraaije, B., Mehl, A., Oerke, E.C., Sierotzki, H., and Stammler, G., Eds., Braunschweig: Phytomedizinische Gesellschaft, 2017, pp. 33–50.

    Google Scholar 

  21. Tufan, F., Keleş, E.N., Sefer, Ö., Eraslan, M., Sefalı, S., Güngör, Ö., and Yörük, E., Determining WRKY transcription factors related to salinity stress response in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.), Anadolu Tarım Bilimleri Dergisi, 2020, vol. 35, pp. 1–7. https://doi.org/10.7161/omuanajas.527704

    Article  Google Scholar 

  22. Uluhan, E., Keleş, E.N., and Tufan, F., Analysis of WRKY transcription factors in barley cultivars infected with Fusarium culmorum, Int. J. Life Sci. Biotechnol., 2019, vol. 2 pp. 165–174. https://doi.org/10.38001/ijlsb.588730

    Article  Google Scholar 

  23. Wang, H., Yan, Y., Wang, J., Zhang, H., and Qi, W., Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014, PLoS One, 2012, vol. 7, article ID e29452. https://doi.org/10.1371/journal.pone.0029452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yörük, E., Tetraconazole leads to alterations in Fusarium graminearum at different molecular levels, Appl. Ecol. Environ. Res., 2018, vol. 16, pp. 6155–6167. https://doi.org/10.15666/aeer/1605_61556167

    Article  Google Scholar 

  25. Yörük, E. and Albayrak, G., Genetic characterization of Fusarium graminearum and F. culmorum isolates from Turkey by using random-amplified polymorphic DNA, Genet. Mol. Res., 2013, vol. 12, no.2, pp. 1360–1372. https://doi.org/10.4238/2013.April.25.7

    Article  CAS  PubMed  Google Scholar 

  26. Yörük, E. and Yli-Mattila, T., Class b-trichothecene profiles of Fusarium species as causal agents of head blight, in Advancing Frontiers in Mycology and Mycotechnology, Satyanarayana, T., Deshmukh, S., and Deshpande, M., Eds., Singapore: Springer, 2019. https://doi.org/10.1007/978-981-13-9349-5_14

  27. Yörük, E., Keleş, E., Erlik, S., Yıldız, S., Kocabaş, G., and Özsoy, E., Physiological and genetic variation of Hordeum vulgare L. and Triticum aestivum L. lines planted in Turkey, J. Inst. Sci. Technol., 2021, vol. 11, pp. 2498–2505. https://doi.org/10.21597/jist.959880

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Tufan Dülger.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tufan Dülger, A.F., Yörük, E. Risk Assessment of Tetraconazole Fungicide at the Molecular Level in Hordeum vulgare L.. Biol Bull Russ Acad Sci 49, 292–298 (2022). https://doi.org/10.1134/S1062359022040148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359022040148

Keywords:

Navigation