Skip to main content
Log in

Hydrogen peroxide stimulates exocytosis of von Willebrand factor in human umbilical vein endothelial cells

  • Animal and Human Physiology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The aim of our research was to study the influence of hydrogen peroxide on the exocytosis of von Willebrand factor (vWF) in human umbilical vein endothelial cells (HUVEC). We have found that H2O2 at a non-toxic concentration (100 μM) increases the amount of vWF secreted by HUVEC by 43 ± 14% over control (p < 0.03) and elevates total exposition of vWF on cell surface by 89 ± 5% (p < 0.01). Analysis of immunofluorescent images of HUVEC with CellProfiler program revealed that the average number of antigen positive structures on the single cell surface increases from 11.4 ± 0.16 in control up to 17.5 ± 0.21 after incubation with H2O2 (p < 0.01). vWF is exposed on the cell surface as dots with the average sizes around 1–3 μm. H2O2 causes an increase in the number of these dots and the appearence of the strings of vWF which are absent in control HUVEC. It is suggested that H2O2 may serve as a messenger which stimulates vWF exocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernardo, A., Ball, C., Nolasco, L., Moake, J.F., and Dong, J.F., Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow, Blood, 2004, vol. 104, no. 1, pp. 100–106.

    Article  CAS  PubMed  Google Scholar 

  • Bray, M.A., Vokes, M.S., and Carpenter, A.E., Using Cell- Profiler for automatic identification and measurement of biological objects in images, Curr. Protoc. Mol. Biol., 2015, vol. 109, pp. 1–18.

    Google Scholar 

  • Breton-Romero, R. and Lamas, S., Hydrogen peroxide signaling in vascular endothelial cells, Redox Biol., 2014, vol. 2, pp. 529–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Xiao, J., Kuroda, J., Ago, T., Sadoshima, J., Cohen, R.A., and Tong, X., Both hydrogen peroxide and transforming growth factor beta 1 contribute to endothelial Nox4 mediated angiogenesis in endothelial Nox4 transgenic mouse lines, Biochim. Biophys. Acta, 2014, vol. 1842, no. 12, pp. 2489–2499.

    Article  CAS  PubMed  Google Scholar 

  • Evangelista, A.M., Thompson, M.D., Bolotina, V.M., Tong, X., and Cohen, R.A., Nox4- and Nox2-dependent oxidant production is required for VEGF-induced SERCA cysteine-674 S-glutathiolation and endothelial cell migration, Free Radic. Biol. Med., 2012, vol. 53, no. 12, pp. 2327–2334.

    Article  CAS  PubMed  Google Scholar 

  • Ewenstein, B.M., Warhol, M.J., Handin, R.I., and Pober, J.S., Composition of the von Willebrand factor storage organelle (Weibel-Palade body) isolated from cultured human umbilical vein endothelial cells, J. Cell Biol., 1987, vol. 104, no. 5, pp. 1423–1433.

    Article  CAS  PubMed  Google Scholar 

  • Goncharov, N.V., Sakharov, I., Danilov, S.M., and Sakandelidze, O.G., Use of collagenase from the hepatopancreas of the Kamchatka crab for isolating and culturing endothelial cells of the large vessels in man, Biull. Eksp. Biol. Med., 1987, vol. 104, no. 9, pp. 376–378.

    CAS  PubMed  Google Scholar 

  • Hughes, S.F., Cotter, M.J., Evans, S.A., Jones, K.P., and Adams, R.A., Role of leucocytes in damage to the vascular endothelium during ischaemia-reperfusion injury, Br. J. Biomed. Sci., 2006, vol. 63, no. 4, pp. 166–170.

    Article  CAS  PubMed  Google Scholar 

  • Jaffe, E.A., Nachman, R.L., Becker, C.G., and Minick, C.R., Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria, J. Clin. Invest., 1973, vol. 52, no. 11, pp. 2745–2756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, D.P., Radical-free biology of oxidative stress, Am. J. Physiol. Cell. Physiol., 2008, vol. 295, no. 4, pp. C849–C868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanaji, S., Fahs, S.A., Shi, Q., Haberichter, S.L., and Montgomery, R.R., Contribution of platelet vs. endothelial vwf to platelet adhesion and hemostasis, J. Thromb. Haemost., 2012, vol. 10, no. 8, pp. 1646–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudryavtsev, I.V., Garnyuk, V.V., Nadeev, A.D., and Goncharov, N.V., Hydrogen peroxide modulates expression of surface antigens by human umbilical vein endothelial cells in vitro, Biochemistry (Moscow) Supp. S. A: Membr. Cell Biol., 2014, vol. 8, no. 1, pp. 907–912.

    Google Scholar 

  • Lowenstein, C.J., Morrell, C.N., and Yamakuchi, M., Regulation of Weibel–Palade body exocytosis, Trends Cardiovasc. Med., 2005, vol. 15, no. 8, pp. 302–308.

    Article  CAS  PubMed  Google Scholar 

  • Maciag, T., Cerundolo, J., Ilsley, S., Kelley, P.R., and Forand, R., An endothelial cell growth factor from bovine hypothalamus: identification and partial characterization, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, no. 11, pp. 5674–5678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita, K., Morrell, C.N., Mason, R.J., Yamakuchi, M., Khanday, F.A., Irani, K., and Lowenstein, C.J., Hydrogen peroxide regulation of endothelial exocytosis by inhibition of N-ethylmaleimide sensitive factor, J. Cell Biol., 2005, vol. 170, no. 1, pp. 73–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moake, J.L., Thrombotic microangiopathies, N. Engl. J. Med., 2002, vol. 347, no. 8, pp. 589–600.

    Article  CAS  PubMed  Google Scholar 

  • Mourik, M.J., Valentijn, J.A., Voorberg, J., Koster, A.J., Valentijn, K.M., and Eikenboom, J., Von Willebrand factor remodeling during exocytosis from vascular endothelial cells, J. Thromb. Haemost., 2013, vol. 11, no. 11, pp. 2009–2019.

    Article  CAS  PubMed  Google Scholar 

  • Nadeev, A.D., Kudryavtsev, I.V., Serebriakova, M.K., Avdonin, P.V., Zinchenko, V.P., and Goncharov, N.V., Dual proapoptotic and pronecrotic effect of hydrogen peroxide on human umbilical vein endothelial cells, Tsitologiia, 2015, vol. 57, no. 12, pp. 909–916.

    CAS  PubMed  Google Scholar 

  • Panieri, E. and Santoro, M.M., ROS signaling and redox biology in endothelial cells, Cell Mol. Life Sci., 2015, vol. 72, no. 17, pp. 3281–3303.

    Article  CAS  PubMed  Google Scholar 

  • Piovella, F., Nalli, G., Malamani, G.D., Majolino, I., Frassoni, F., Sitar, G.M., Ruggeri, A., Dell’Orbo, C., and Ascari, E., The ultrastructural localization of factor VIIIantigen in human platelets, megakaryocytes and endothelial cells utilizing a ferritin-labelled antibody, Br. J. Haematol., 1978, vol. 39, no. 2, pp. 209–213.

    Article  CAS  PubMed  Google Scholar 

  • Ray, R., Murdoch, C.E., Wang, M., Santos, C.X., Zhang, M., Alom-Ruiz, S., Anilkumar, N., Ouattara, A., Cave, A.C., Walker, S.J., Grieve, D.J., Charles, R.L., Eaton, P., Brewer, A.C., and Shah, A.M., Endothelial Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo, Arterioscler. Thromb. Vasc. Biol., 2011, vol. 31, no. 6, pp. 1368–1376.

    Article  CAS  PubMed  Google Scholar 

  • Rondaij, M.G., Bierings, R., Kragt, A., van Mourik, J.A., and Voorberg, J., Dynamics and plasticity of Weibel–Palade bodies in endothelial cells, Arterioscler. Thromb. Vasc. Biol., 2006, vol. 26, no. 5, pp. 1002–1007.

    Article  CAS  PubMed  Google Scholar 

  • Sadler, J.E., Biochemistry and genetics of von Willebrand factor, Ann. Rev. Biochem., 1998, vol. 67, pp. 395–424.

    Article  CAS  PubMed  Google Scholar 

  • Shappell, S.B., Toman, C., Anderson, D.C., Taylor, A.A., Entman, M.L., and Smith, C.W., Mac-1 (CD11b/CD18) mediates adherence-dependent hydrogen peroxide production by human and canine neutrophils, J. Immunol., 1990, vol. 144, no. 7, pp. 2702–2711.

    CAS  PubMed  Google Scholar 

  • Takac, I., Schroder, K., and Brandes, R.P., The Nox family of NADPH oxidases: friend or foe of the vascular system?, Curr. Hypertens. Rep., 2012, vol. 14, no. 1, pp. 70–78.

    Article  CAS  PubMed  Google Scholar 

  • Turner, N., Nolasco, L., and Moake, J., Generation and breakdown of soluble ultralarge von Willebrand factor multimers, Semin. Thromb. Hemost., 2012, vol. 38, no. 1, pp. 38–46.

    Article  CAS  PubMed  Google Scholar 

  • Valentijn, K.M., van Driel, L.F., Mourik, M.J., Hendriks, G.J., Arends, T.J., Koster, A.J., and Valentijn, J.A., Multigranular exocytosis of Weibel–Palade bodies in vascular endothelial cells, Blood, 2010, vol. 116, no. 10, pp. 1807–1816.

    Article  CAS  PubMed  Google Scholar 

  • Vischer, U.M., Von willebrand factor, endothelial dysfunction, and cardiovascular disease, J. Thromb. Haemost, 2006, vol. 4, no. 6, pp. 1186–1193.

    Article  CAS  PubMed  Google Scholar 

  • Vischer, U.M., Jornot, L., Wollheim, C.B., and Theler, J.M., Reactive oxygen intermediates induce regulated secretion of von Willebrand factor from cultured human vascular endothelial cells, Blood, 1995, vol. 85, no. 11, pp. 3164–3172.

    CAS  PubMed  Google Scholar 

  • Wagner, D.D. and Bonfanti, R., Von Willebrand factor and the endothelium, Mayo Clin. Proc., 1991, vol. 66, no. 6, pp. 621–627.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, D.D., Olmsted, J.B., and Marder, V.J., Immunolocalization of von Willebrand protein in Weibel–Palade bodies of human endothelial cells, J. Cell Biol., 1982, vol. 95, no. 1, pp. 355–360.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Yang, Z., Jiang, Y., and Hartnett, M.E., Endothelial NADPH oxidase 4 mediates vascular endothelial growth factor receptor 2-induced intravitreal neovascularization in a rat model of retinopathy of prematurity, Mol. Vis., 2014, vol. 20, рр. 231–241.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weibel, E.R. and Palade, G.E., New cytoplasmic components in arterial endothelia, J. Cell Biol., 1964, vol. 23, pp. 101–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong, Y., Huo, Y., Chen, C., Zeng, H., Lu, X., Wei, C., Ruan, C., Zhang, X., Hu, Z., Shibuya, M., and Luo, J., Vascular endothelial growth factor (VEGF) receptor-2 tyrosine 1175 signaling controls VEGF-induced von Willebrand factor release from endothelial cells via phospholipase C-gamma 1- and protein kinase A-dependent pathways, J. Biol. Chem., 2009, vol. 284, no. 35, pp. 23217–23224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, D., Liu, X., Liu, M., Chi, H., Liu, J., and Han, H., Protective effects of quercetin and taraxasterol against H2O2-induced human umbilical vein endothelial cell injury in vitro, Exp. Ther. Med., 2015, vol. 10, no. 4, pp. 1253–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Avdonin.

Additional information

Original Russian Text © P.V. Avdonin, A.A. Tsitrina, G.Y. Mironova, P.P. Avdonin, I.L. Zharkikh, A.D. Nadeev, N.V. Goncharov, 2017, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2017, No. 5, pp. 549–556.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdonin, P.V., Tsitrina, A.A., Mironova, G.Y. et al. Hydrogen peroxide stimulates exocytosis of von Willebrand factor in human umbilical vein endothelial cells. Biol Bull Russ Acad Sci 44, 531–537 (2017). https://doi.org/10.1134/S106235901705003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106235901705003X

Navigation