Skip to main content
Log in

Competence factors of retinal pigment epithelium cells for reprogramming in the neuronal direction during retinal regeneration in newts

  • Developmental Biology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Retinal pigment epithelium (RPE) cells that have the unique ability to reprogram retinal cells in vivo were analyzed in the adult newt. Our own data and that available in the literature on the peculiarities of the biology of these cells (from morphology to molecular profile, which can be associated with the capability of phenotype change) were summarized. It was established that the molecular traits of specialized and poorly differentiated cells are combined in RPE of the adult newt. It was registered that persistent (at a low level) proliferation and rapid change of specific cytoskeleton proteins can contribute to the success of RPE cell reprogramming in the neuronal direction. Each of the considered factors of competence for reprogramming can be found for animal RPE, whose cells are not able in vivo to change the phenotype to a neuronal one; however, their totality (supported by the epigenetic state permissive for conversion) is probably an internal property of only newt RPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Hussaini, Kam, H., Vagler, J.H., et al., Mature retinal pigment epithelium cells are retained in the cell cycle and proliferate in vivo, Mol. Vision, 2008, vol. 14, pp. 1784–1791.

    CAS  Google Scholar 

  • Aulicino, F., Theka, I., Ombrato, L., et al., Temporal perturbation of the Wnt signaling pathway in the control of cell reprogramming is modulated by TGFI, Stem Cell Rep., 2014, vol. 2, pp. 707–720.

    Article  CAS  Google Scholar 

  • Avdonin, P.P., Markitantova, Yu.V., Zinov’eva, R.D., and Mitashov, V.I., Expression of regulatory genes Pax6, Otx2, Six3, and FGF2 during newt retina regeneration, Biol. Bull. (Moscow), 2008, vol. 35, no. 4, pp. 355–362.

    Article  CAS  Google Scholar 

  • Avdonin, P.P., Expression of regulatory genes Fgf2, Pax6, Six3, Otx2, Pitx1, and Pitx2 in epimorphic regeneration of the retina in the newt Pleurodeles waltl, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: IBR RAN, 2010.

    Google Scholar 

  • Avdonin, P.P., Grigoryan, E.N., and Markitantova, Yu.V., Transcriptional factor Pitx2: localization during triton retina regeneration, Biol. Bull. (Moscow), 2010, vol. 37, no. 3, pp. 231–236.

    Article  CAS  Google Scholar 

  • Beekman, Ch., Nichane, M., De Clercq, S., et al., Evolutionarily conserved role of nucleostemin: controlling proliferation of stem/progenitor cells during early vertebrate development, Mol. Cell. Biol., 2006, vol. 26, no. 24, pp. 9291–9301.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bharti, K., Nguyen, M.-T.T., Skuntz, S., et al., The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye, Pigment Cell Res., 2006, vol. 19, no. 5, pp. 380–394.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bharti, K., Miller, S.S., and Arnheiter, H., The new paradigm: retinal pigment epithelium cells generated from embryonic or induced pluripotent stem cells, Pigment Cell Melanoma Res., 2011, vol. 24, no. 1, pp. 21–34.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bharti, K., Gasper, M., Ou, J., Brucato, M., et al., A regulatory loop involving PAX6, MITF, and WNT signaling controls retinal pigment epithelium development, PLoS Genet., 2012, vol. 8, no. 7, p. e1002757.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bonilha, V.L., Retinal pigment epithelium (RPE) cytoskeleton in vivo and in vitro, Exp. Eye Res., 2013. pii: S0014-4835(13)00281-9

    Google Scholar 

  • Burke, J.M., Epithelial phenotype and the RPE: is the answer blowing in the WNT?, Prog. Ret. Eye Res., 2008, vol. 27, pp. 579–595.

    Article  CAS  Google Scholar 

  • Chiba, C. and Mitashov, V.I., Cellular and molecular events in the adult newt retinal regeneration, in The Strategies for Retinal Tissue Repair and Regeneration in Vertebrates: From Fish to Human, Chiba, C., Ed., Kerala, India: Res. Signpost., 2007, pp. 15–33.

    Google Scholar 

  • Chiba, C., Hoshino, A., Nakamura, K., et al., Visual cycle protein RPE65 persists in new retinal cells during retinal regeneration of adult newt, J. Comp. Neurol., 2006, vol. 495, no. 4, pp. 391–407.

    Article  CAS  PubMed  Google Scholar 

  • Crowford, B.J. and Vielkind, U., Location and possible function of fibronectin and laminin in clones of chick retinal pigmented epithelial cells, In vitro 1985, vol. 21, pp. 79–87.

    Google Scholar 

  • Durairaj, Ch., Chastain, J.E., and Kompella, U.B., Intraocular distribution of melanin in human, monkey, rabbit, minipig and dog eyes, Exp. Eye Res., 2012, vol. 98, no. 1, pp. 23–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eguchi, G., “Transdifferentiation” in pigmented epithelial cells of vertebrate eyes in vitro, in Mech. Cell Change, Ebert, J.D. and Okada, T.S., Eds., New York: J. Wiley and Sons, 1979, pp. 273–291.

    Google Scholar 

  • Eguchi, G., Lens transdifferentiation in the vertebrate retinal pigmented epithelial cell, Prog. Ret. Res. Pergamon Press Ltd., 1993, vol. 2,ch. 9, pp. 205–230.

    Article  Google Scholar 

  • Engelhardt, M., Bogdahn, U., and Aigner, L., Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal precursor protein doublecortin, Brain Res., 2005, vol. 1040, pp. 98–111.

    Article  CAS  PubMed  Google Scholar 

  • Enzmann, V., Howard, R.M., Yamauchi, Y., et al., Enhanced induction of RPE lineage markers in pluripotent neural stem cells engrafted into the adult rat subretinal space, Invest. Ophthalmol. Vis. Sci., 2003, vol. 44, no. 12, pp. 5417–5422.

    Article  PubMed  Google Scholar 

  • Fischer, A.J. and Reh, T.A., Identification of a proliferating marginal zone of retinal progenitors in postnatal chickens, Dev. Biol., 2000, vol. 220, pp. 197–210.

    Article  CAS  PubMed  Google Scholar 

  • Fujimura, N., Taketo, M.M., Mori, M., et al., Spatial and temporal regulation of WNT/beta-catenin signaling is essential for development of the retinal pigment epithelium, Dev. Biol., 2009, vol. 334, pp. 31–45.

    Article  CAS  PubMed  Google Scholar 

  • Georgiadis, A., Tschernutter, M., Bainbridge, J.W.B., et al., The tight junction associated signaling proteins ZO-1 and ZONAB regulate retinal pigment epithelium homeostasis in mice, PLoS One, 2010, vol. 5, no. 12, p. e15730.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grigoryan, E.N., Complete retinal detachment causes changes in the expression of cytokeratins in retinal pigment epithelium cells in newts, Izv. Akad. Nauk, Ser. Biol., 1995, no. 4, pp. 412–421.

    Google Scholar 

  • Grigoryan, E.N., Cytological bases of transdifferentiation in eye tissues of vertebrates, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow: IBR RAN, 1998.

    Google Scholar 

  • Grigoryan, E., Shared triggering mechanisms of retinal regeneration in lower vertebrates and retinal rescue in higher ones, in Tissue Regeneration—From Basic Biology to Clinical Application, Davies, J., Ed., Rijeka: In Tech. Croatia, 2012, pp. 145–164.

    Google Scholar 

  • Grigoryan, E.N. and Anton, H.J., The appearance and distribution of the NF-200 neurofilament protein in transdifferentiating cells of the pigment epithelium and in other eye cells during retinal regeneration in newts, Ontogenez, 1993, vol. 24, no. 4, pp. 39–52.

    CAS  Google Scholar 

  • Grigoryan, E.N. and Anton, H.J., An analysis of keratin expression in the cells of the retinal pigment epithelium during transdifferentiation in newts, Ontogenez, 1995, vol. 26, no. 4, pp. 310–323.

    CAS  Google Scholar 

  • Grigoryan, E.N. and Mitashov, V.I., Radioautographic study of proliferation and melanin synthesis in pigment epithelium cells during eye regeneration in newts, Ontogenez, 1979, vol. 10, no. 2, pp. 137–144.

    CAS  Google Scholar 

  • Grigoryan, E.N., Dol’nikova, A.E., and Belkin, V.M., Fibronectin distribution during the transdifferentiation and proliferation of eye cells after retinal detachment and removal of the crystalline lens in newts, Ontogenez, 1990, vol. 21, no. 4, pp. 403–408.

    CAS  Google Scholar 

  • Grigoryan, E.N., Novikova, Yu.P., Kilina, O.V., and Filippov, P.P., A new method of in vitro culturing of retinal pigment epithelium in the posterior eye sector of an adult rat, Klet. Tekhnologii v biologii i meditsine, 2007, no. 4, pp. 207–215.

    Google Scholar 

  • Grigoryan, E.N., Markitantova, Yu.V., Avdonin, P.P., and Radugina, E.A., Study of regeneration in amphibians in age of molecular-genetic approaches and methods, Russ. J. Genet., 2013, vol. 49, no. 1, pp. 46–62.

    Article  CAS  Google Scholar 

  • Hausman, R.E., Ocular extracellular matrices in development, Prog. Ret. Eye Res., 2007, vol. 26, no. 2, pp. 162–188.

    Article  CAS  Google Scholar 

  • Hiscott, P., Sheridan, C., Magee, R.M., and Grierson, I., Matrix and the retinal pigment epithelium in proliferative retinal disease, Prog. Ret. Eye Res., 1999, vol. 18, no. 2, pp. 167–190.

    Article  CAS  Google Scholar 

  • Ikegami, Y., Mitsuda, S., and Araki, M., Neural cell differentiation from retinal pigment epithelial cells of the newt: an organ culture model for the urodele retinal regeneration, J. Neurobiol., 2002, vol. 50, pp. 209–220.

    Article  PubMed  Google Scholar 

  • Keefe, J.R., An analysis of urodelian retinal regeneration, J. Exp. Zool., 1973, vol. 184, pp. 185–257.

    Article  CAS  PubMed  Google Scholar 

  • Kelaini, S., Cochrane, A., and Margariti, A., Direct repro-gramming of adult cells: avoiding the pluripotent state, Stem Cells Cloning, 2014, vol. 7, pp. 19–29.

    PubMed Central  PubMed  Google Scholar 

  • Kiskinis, E. and Eggan, K., Progress toward the clinical application of patient-specific pluripotent stem cells, J. Clin. Invest., 2010, vol. 120, no. 1, pp. 51–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Korte, G.E., Perlman, J.I., and Pollak, A., Regeneration of mammalian retinal pigment epithelium, Int. Rev. Cytol., 1994, vol. 152, pp. 223–263.

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova, A.V., Grigoryan, E.N., and Aleksandrova, M.A., Adult human retinal pigment epithelial cells—a potential source of cells for regeneration retina, Tsitologiia, 2011, vol. 53, no. 6, pp. 505–512.

    CAS  PubMed  Google Scholar 

  • Von Leithner, P.L., Ciurtin, C., and Jeffery, J., Microscopic mammalian retinal pigment epithelium lesions induce widespread proliferation with differences in magnitude between center and periphery, Mol. Vision, 2010, vol. 16, pp. 570–581.

    Google Scholar 

  • Luz-Madrigal, A., Grajales-Esquivel, E., McCorkle, A., et al., Reprogramming of the chick retinal pigmented epithelium after retinal injury, BMC Biol., 2014, vol. 12, p. 28.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma, H. and Pederson, T., Nucleostemin: a multiplex regulator of cell-cycle progression, Trends Cell Biol., 2008, vol. 18, no. 12, pp. 575–579.

    Article  CAS  PubMed  Google Scholar 

  • Machalinska, A., Kawa, M.P., Pius-Sadowska, E., et al., Endogenous regeneration of damaged retinal pigment epithelium following low dose sodium iodate administration: an insight into the role of glial cells in retinal repair, Exp. Eye Res., 2013, vol. 112, pp. 68–78.

    Article  CAS  PubMed  Google Scholar 

  • Maki, N., Takechi, K., Sano, S., et al., Rapid accumulation of nucleostemin in nucleolus during newt regeneration, Dev. Dynam., 2007, vol. 263, pp. 941–950.

    Article  Google Scholar 

  • Maki, N., Suetsugu-Maki, R., Tarui, H., et al., Expression of stem cell pluripotency factors during regeneration in newts, Dev. Dynam., 2009, vol. 238, no. 6, pp. 1613–1616.

    Article  CAS  Google Scholar 

  • Markitantova, Yu.V., Avdonin, P.P., and Grigoryan, E.N., FGF2 signaling pathway components in tissues of the posterior eye sector in the adult newt Pleurodeles waltl, Biol. Bull. (Moscow), 2014a, vol. 41, no. 4, pp. 297–305.

    Article  CAS  Google Scholar 

  • Markitantova, Yu.V., Avdonin, P.P., and Grigoryan, E.N., Nucleostemin expression during in situ reprogramming of eye pigment epithelium cells during retina regeneration in an adult newt, Cell Tissue Biol., 2014b (in press).

    Google Scholar 

  • Martinez-Morales, J.R., Dolez, V., Rodrigo, I., et al., Otx2 activates the molecular network underlying retinal pigment epithelium differentiation, J. Biol. Chem., 2003, vol. 278, pp. 21721–21731.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Morales, J.R., Del Bene, F., Nica, G., et al., Differentiation of the vertebrate retina is coordinated by an FGF signaling center, Dev. Cell, 2005, vol. 8, no. 4, pp. 565–574.

    Article  CAS  PubMed  Google Scholar 

  • Milyushina, L.A., Verdiev, B.I., Kuznetsova, A.V., and Aleksandrova, M.A., Expression of pluripotent and retinal markers in pigment retinal epithelium in adult human eye in vitro, Klet. Tekhnol. Biol. Med., 2012, no. 1, pp. 44–50.

    Google Scholar 

  • Mitashov, V.I., Patterns of changes in mitotic cycles during cell transformation and regeneration in lower vertebrates, Tsitologiia, 1980, vol. 2, pp. 371–380.

    Google Scholar 

  • Mitashov, V.I., Retinal regeneration in amphibians, Int. J. Dev. Biol., 1997, vol. 41, no. 6, pp. 893–905.

    CAS  PubMed  Google Scholar 

  • Mitashov, V.I., Expression of regulatory and tissue-specific genes controlling regenerative potencies of eye tissues in vertebrates, Russ. J. Dev. Biol., 2007, vol. 38, no. 4, pp. 198–205.

    Article  Google Scholar 

  • Mitashov, V.I., Arsanto, J.P., Markitantova, Y.V., and Thouveny, Y., Remodeling processes during neural retinal regeneration in adult urodeles: an immunohistochemical survey, Int. J. Dev. Biol., 1995, vol. 39, no. 6, pp. 993–1003.

    CAS  PubMed  Google Scholar 

  • Mizuno, A., Yasumuro, H., Yoshikawa, T., et al., MEK-ERK signaling in adult newt retinal pigment epithelium cells is strengthened immediately after surgical induction of retinal regeneration, Neurosci. Lett., 2012, vol. 523, no. 1, pp. 39–44.

    Article  CAS  PubMed  Google Scholar 

  • Mohan, P.S. and Spiro, R.G., Macromolecular organization of basement membranes, J. Biol. Chem., 1986, vol. 261, pp. 4328–4336.

    CAS  PubMed  Google Scholar 

  • Moiseyev, G., Chen, Y., Takahashi, Y., et al., PE65 is the isomerohydrolase in the retinoid visual cycle, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, no. 35, pp. 12413–12418.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Muller, F., Rohrer, H., and Vogel-Hopker, A., Bone morphogenetic proteins specify the retinal pigment epithelium in the chick embryo, Development, 2007, vol. 134, pp. 3483–3493.

    Article  PubMed  Google Scholar 

  • Nishihara, D., Yajima, I., Tabata, H., et al., Otx2 is involved in the regional specification of the developing retinal pigment epithelium by preventing the expression of Sox2 and Fgf8, factors that induce neural retina differentiation, PLoS One, 2012, vol. 7, no. 11, p. e48879.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Novikova, Yu.P., Poplinskaya, V.A., Aleinikova, K.S., and Grigoryan, E.N., A study of the localization and accumulation of S-phase cells in the retina of newt Pleurodeles waltl after experimental pigment epithelial detachment, Russ. J. Dev. Biol., 2008, vol. 39, no. 2, pp. 116–121.

    Article  Google Scholar 

  • Novikova, Yu.P., Aleinikova, K.S., Krasnov, M.S., et al., The retinal pigment epithelial cells of the adult newt and rat under conditions of in vitro organotypic culture, Biol. Bull. (Moscow), 2010, vol. 37, no. 3, pp. 221–230.

    Article  Google Scholar 

  • Novikova, Yu.P., Identification and activation in vitro of hidden regenerative potentials of the retina of vertebrate eye, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: IBR RAN, 2010.

    Google Scholar 

  • Okada, T.S., Transdifferentiation: Flexibility in Cell Differentiation, Oxford: Clarendon Press, 1991.

    Google Scholar 

  • Ortiz, J.R., Vigny, M., Courtois, Y., and Jeanny, J.-C., Immunocytochemical study of extracellular matrix components during lens and neural retina regeneration in the adult newt, Exp. Eye Res., 1992, vol. 54, no. 6, pp. 861–870.

    Article  CAS  PubMed  Google Scholar 

  • Park, C.M., Basic fibroblast growth factor induces retinal regeneration in vivo, Dev. Biol., 1989, vol. 134, pp. 201–205.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, M.J., Wallace, K.A., Dickerson, S.J., et al., Blood-derived human iPS cells generate optic vesicle-like structures with the capacity to form retinal laminae and develop synapses, Invest. Ophthalmol. Vis. Sci., 2012, vol. 53, no. 4, pp. 2007–2019.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rattner, A., Toulabi, L., Williams, J., et al., The genomic response of the retinal pigment epithelium to light damage and retinal detachment, J. Neurosci., 2008, vol. 28, no. 39, pp. 9880–9889.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reh, T.A., Nagy, T., and Gretton, H., Retinal pigmented epithelial cells induced to transdifferentiate to neurons by laminin, Nature, 1987, vol. 330, no. 6143, pp. 68–71.

    Article  CAS  PubMed  Google Scholar 

  • Sakami, S., Hisatomi, O., Sakakibara, S., et al., Downregulation of Otx2 in the dedifferentiated RPE cells of regenerating newt retina, Brain Res. Dev. Brain Res., 2005, vol. 155, no. 1, pp. 49–59.

    Article  CAS  PubMed  Google Scholar 

  • Sakami, S., Etter, P., and Reh, T.A., Activin signaling limits the competence for retinal regeneration from the pigmented epithelium, Mech. Dev., 2008, vol. 125, pp. 106–116.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salero, E., Blenkinsop, T.A., Corneo, B., et al., Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives, Cell Stem Cell, 2012, vol. 10, p. 88–95.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, S.Y. and Peisch, R.D., Melanin concentration in normal human retinal pigment epithelium. Regional variation and age-related reduction, Invest. Ophthalmol. Vis. Sci., 1986, vol. 27, pp. 1063–1067.

    CAS  PubMed  Google Scholar 

  • Schraermeyer, U. and Heimann, K., Current understanding of the role of retinal pigment epithelium and its pigmentation, Pigment Cell Res., 1999, vol. 12, pp. 219–236.

    Article  CAS  PubMed  Google Scholar 

  • Spence, J.R., Madhavan, M., Aycinena, K., and Del RioTsonis, K., Retina regeneration in the chick embryo is not induced by spontaneous Mitf downregulation but requires FGF/FGFR/MEK/Erk dependent upregulation of Pax6, Mol. Vis., 2007, vol. 13, pp. 57–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stone, L.S., The role of retinal pigment cells in regenerating neural retinae of adult salamander eyes, J. Exp. Zool., 1950, vol. 113, pp. 9–31.

    Article  Google Scholar 

  • Stroeva, O.G. and Mitashov, V.I., Retinal pigment epithelium: proliferation and differentiation during development and regeneration, Int. Rev. Cytol., 1983, vol. 83, pp. 221–293.

    Article  CAS  PubMed  Google Scholar 

  • Susaki, K. and Chiba, Ch., MEK mediates in vitro neural transdifferentiation of the adult newt retinal pigment epithelium cells: is FGF2 an induction factor?, Pigment Cell Res., 2007, vol. 20, pp. 364–379.

    Article  CAS  PubMed  Google Scholar 

  • Svendsen, C.N., Back to the future: how human induced pluripotent stem cells will transform regenerative medicine, Hum. Mol. Genet., 2013, vol. 22, no. R1, pp. R32–R38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai, R.Y. and McKay, R.D., A multistep, GTP-driven mechanism controlling the dynamic cycling of nucleostemin, J. Cell Biol., 2005, vol. 168, no. 2, pp. 179–184.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsai, R.Y.L. and Meng, L., Nucleostemin: a latecomer with new tricks, Int. J. Biochem. Cell Biol., 2009, vol. 41, no. 11, pp. 2122–2124.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turksen, K., Aubin, J.E., Sodek, J., and Kalnins, V.I., Changes in the distribution of laminin, fibronectin, type IV collagen and heparan sulfate proteoglycan during colony formation by chick retinal pigment epithelial cells in vitro, Collagen Related Res., 1984, vol. 4, no. 6, pp. 413–426.

    Article  CAS  Google Scholar 

  • Vigneault, F., Zaniolo, K., Gaudreault, M., et al., Control of integrin genes expression in the eye, Prog. Ret. Eye Res., 2007, vol. 26, no. 2, pp. 99–161.

    Article  CAS  Google Scholar 

  • Westenskow, P., Piccolo, S., and Fuhrmann, S., Beta-catenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression, Development, 2009, vol. 136, pp. 2505–2510.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshikawa, T., Mizuno, A., Yasumuro, H., et al., MEKERK and heparin-susceptible signaling pathways are involved in cell-cycle entry of the wound edge retinal pigment epithelium cells in the adult newt, Pigment Cell Melanoma Res., 2012, vol. 25, pp. 66–82.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X.M. and Yang, X.J., Temporal and spatial effects of sonic hedgehog signaling in chick eye morphogenesis, Dev. Biol., 2001, vol. 233, pp. 271–290.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Grigoryan.

Additional information

Original Russian Text © E.N. Grigoryan, 2015, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2015, No. 1, pp. 5–16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoryan, E.N. Competence factors of retinal pigment epithelium cells for reprogramming in the neuronal direction during retinal regeneration in newts. Biol Bull Russ Acad Sci 42, 1–11 (2015). https://doi.org/10.1134/S1062359015010045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359015010045

Keywords

Navigation