Skip to main content
Log in

Calmodulin inhibitors suppress calcium signaling from serotonin receptors in smooth muscle cells and abolish vasoconstrictive response on intravenous introduction of serotonin

  • Animal and Human Physiology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Comparative study of the effect of calmodulin inhibitors trifluoperazine, W-12, and W-13 and the TRPV1 channel blocker capsazepine on receptor-dependent calcium metabolism in smooth muscle cells of the rat aorta and on the contraction of the isolated rat aorta was performed. Trifluoperazine almost completely abolishes an increase in free cytoplasmic calcium concentration in smooth muscle cells isolated from the rat aorta and smooth muscle cells of the A7r5 line in response to serotonin and does not affect cellular reaction to vasopressin and angiotensin II. W-12 and W-13 also do not attenuate responses to vasopressin and angiotensin II and reduces by two times free cytoplasmic calcium concentration elevation in response to serotonin. The efficiency of calcium metabolism suppression by calmodulin inhibitors correlates with the degree of inhibition of the aorta contractile response to serotonin. It was demonstrated that the inhibitory action of calmodulin antagonists on calcium metabolism in smooth muscle cells and the contractility of the isolated rat aorta during the activation of serotonin vasoconstrictive receptors are realized by a TRPV1-independent mechanism. It was demonstrated in experiments in vivo that trifluoperazine does not influence hypotensive reaction in rats (normally observed in response to intravenous serotonin injection), but removes the hypertensive effect of this neurotransmitter in rats after chronic introduction of dexamethasone. The results obtained confirm the hypothesis (that we previously stated) about the direct involvement of calmodulin in signal transmission from vasoconstrictive serotonin receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bal, M., Zaika, O., Martin, P., and Shapiro, M.S., Calmodulin binding to M-type K-channels assayed by TIRF/FRET in living cells, J. Physiol., 2008, vol. 586, pp. 2307–2320.

    Article  PubMed  CAS  Google Scholar 

  • Bal, M., Zhang, J., Hernandez, C.C., et al., Ca2+/calmodulin disrupts AKAP79/150 interactions with KCNQ (M-type) K+ channels, J. Neurosci., 2010, vol. 30, no. 6, pp. 2311–2323.

    Article  PubMed  CAS  Google Scholar 

  • Baylie, R.L. and Brayden, J.E., RPV channels and vascular function, Acta Physiol. (Oxf.), 2011, vol. 203, no. 1, pp. 99–116.

    Article  CAS  Google Scholar 

  • Belcheva, M.M., Szùcs, M., Wang, D., et al., μ-Opioid receptor-mediated ERK activation involves calmodulin-dependent epidermal growth factor receptor transactivation, J. Biol. Chem., 2001, vol. 276, no. 36, pp. 33847–33853.

    Article  PubMed  CAS  Google Scholar 

  • Bofill-Cardona, E., Kudlacek, O., Yang, Q., et al., Binding of calmodulin to the D2-dopamine receptor reduces receptor signaling by arresting the G protein activation switch, J. Biol. Chem., 2000, vol. 275, no. 42, pp. 32672–32680.

    Article  PubMed  CAS  Google Scholar 

  • Devesa, I., Planells-Cases, R., Fernndez-Ballester, G., et al., Role of the transient receptor potential vanilloid 1 in inflammation and sepsis, J. Inflam. Res., 2011, vol. 4, pp. 67–81.

    CAS  Google Scholar 

  • Di, A. and Malik, A.B., TRP channels and the control of vascular function, Curr. Opin. Pharmacol., 2010, vol. 10, no. 2, pp. 127–132.

    Article  PubMed  CAS  Google Scholar 

  • Douglass, P.M., Salins, L.L., Dikici, E., and Daunert, S., Class-selective drug detection: fluorescently-labeled calmodulin as the biorecognition element for phenothiazines and tricyclic antidepressants, Bioconjug. Chem., 2002, vol. 13, pp. 1186–1192.

    Article  PubMed  CAS  Google Scholar 

  • Earley, S., Vanilloid and melastatin transient receptor potential channels in vascular smooth muscle, Microcirculation, 2010, vol. 17, no. 4, pp. 237–249.

    Article  PubMed  CAS  Google Scholar 

  • Firth, A.L., Remillard, C.V., and Yuan, J.J., TRP channels in hypertension, Biochim. Biophys. Acta, 2007, vol. 1772, no. 8, pp. 895–906.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner, E.E., Arthur, J.F., Berndt, M.C., and Andrews, R.K., Role of calmodulin in platelet receptor function, Curr. Med. Chem. Cardiovasc. Hematol. Agents, 2005, vol. 3, no. 4, pp. 283–287.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, S., Lozano-Cuenca, J., Villaln, C.M., et al., Pharmacological characterisation of capsaicin-induced relaxations in human and porcine isolated arteries, Naunyn-Schmiedeberg’s Arch. Pharmacol., 2007, vol. 375, pp. 29–38.

    Article  CAS  Google Scholar 

  • Halling, D.B., Aracena-Parks, P., and Hamilton, S.L., Regulation of voltage-gated Ca2+ channels by calmodulin, Sci. STKE, 2005, vol. 315, p. re15.

    Google Scholar 

  • Ho, K.W., Ward, N.J., and Calkins, D.J., TRPV1: a stress response protein in the central nervous system, Am. J. Neurodegener. Dis., 2012, vol. 1, no. 1, pp. 1–14.

    Article  PubMed  Google Scholar 

  • Hopps, J.J., Dunn, W.R., and Randall, M.D., Vasorelaxation to capsaicin and its effects on calcium influx in arteries, Eur. J. Pharmacol., 2012, vol. 681, nos. 1–3, pp. 88–93.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, R., Jensen, L.J., Shi, J., et al., Transient receptor potential channels in cardiovascular function and disease, Circ. Res., 2006, vol. 99, pp. 119–131.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, R., Jian, Z., and Kawarabayashi, Y., Mechanosensitive TRP channels in cardiovascular pathophysiology, Pharmacol. Ther., 2009, vol. 123, no. 3, pp. 371–385.

    Article  PubMed  CAS  Google Scholar 

  • Jung, J., Shin, J.S., Lee, S.Y., et al., Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulindependent kinase II regulates its vanilloid binding, J. Biol. Chem., 2004, vol. 279, no. 8, pp. 7048–7054.

    Article  PubMed  CAS  Google Scholar 

  • Kark, T., Bagi, Z., Lizanecz, E., et al., Tissue-specific regulation of microvascular diameter: opposite functional roles of neuronal and smooth muscle located vanilloid receptor-1, Mol. Pharmacol., 2008, vol. 73, no. 5, pp. 1405–1412.

    Article  PubMed  CAS  Google Scholar 

  • Kozhevnikova, L.M. and Avdonin, P.V., Involvement of calmodulin in realization of vasoconstrictive effects of serotonin and norepinephrine, Biol. Bull., 2012, vol. 39, no. 4, pp. 360–367.

    Article  CAS  Google Scholar 

  • Kozhevnikova, L.M., Avdonin, P.P., Sukhanova, I.F., and Avdonin, P.V., The role of desensitization of glucocorticoid receptors in the development of resistance of vessels to endogenous vasoconstrictors in traumatic shock, Vestn. Ross. Akad. Med. Nauk, 2007, no. 6, pp. 3–8.

    Google Scholar 

  • Kozhevnikova, L.M., Avdonin, P.P., Sukhanova, I.F., and Avdonin, P.V., Inversion of the response to serotonin in rats with traumatic shock, Bull. Exp. Biol. Med., 2008, vol. 145, no. 3, pp. 298–301.

    Article  PubMed  CAS  Google Scholar 

  • Kozhevnikova, L.M., Sukhanova, I.F., and Avdonin, P.V., Activation of “silent” vasoconstrictive 5-HT1A receptors as a possible mechanism of synergism in angiotensin II and serotonin effect on vascular tone, Biol. Bull., 2011, vol. 38, no. 1, pp. 57–64.

    Article  CAS  Google Scholar 

  • Labasque, M., Reiter, E., Becamel, C., et al., Physical interaction of calmodulin with the 5-hydroxytryptamine2C receptor C-terminus is essential for G protein-independent, arrestin-dependent receptor signaling, Mol. Biol. Cell, 2008, vol. 9, no. 11, pp. 4640–4650.

    Article  Google Scholar 

  • Likic, V.A., Gooley, P.R., Speed, T.P., and Strehler, E.E., A statistical approach to the interpretation of molecular dynamics simulations of calmodulin equilibrium dynamics, Protein Sci., 2005, vol. 14, pp. 2955–2963.

    Article  PubMed  CAS  Google Scholar 

  • Liu, M., Liu, M.Ch., Magoulas, Ch., et al., Versatile regulation of cytosolic Ca2+ by vanilloid receptor I in rat dorsal root ganglion neurons, J. Biol. Chem., 2003, vol. 278, no. 7, pp. 5462–5472.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, I.C., Owen, D.E., Cripps, T.V., et al., Activation of vanilloid receptor 1 by resiniferatoxin mobilizes calcium from inositol 1,4,5-trisphosphate-sensitive stores, British. J. Pharmacol., 2003, vol. 138, pp. 172–176.

    Article  CAS  Google Scholar 

  • Matsushima, N., Hayashi, N., Jinbo, Y., and Izumi, Y., Ca2+-bound calmodulin forms a compact globular structure on binding four trifluoperazine molecules in solution, Biochem. J., 2000, vol. 347, pp. 211–215.

    Article  PubMed  CAS  Google Scholar 

  • Minakami, R., Jinnai, N., and Sugiyama, H., Phosphorylation and calmodulin binding of the metabotropic glutamate receptor subtype 5 (mGluR5) are antagonistic in vitro, J. Biol. Chem., 1997, vol. 272, no. 32, pp. 20291–20298.

    Article  PubMed  CAS  Google Scholar 

  • Moccia, F., Berra-Romani, R., and Tanzi, F., Update on vascular endothelial Ca2+ signalling: a tale of ion channels, pumps and transporters, World J. Biol. Chem., 2012, vol. 3, no. 7, pp. 127–158.

    Article  PubMed  Google Scholar 

  • Nakajima, Y., Yamamoto, T., Nakayama, T., and Nakanishi, S., A relationship between protein kinase c phosphorylation and calmodulin binding to the metabotropic glutamate receptor subtype 7, J. Biol. Chem., 1999, vol. 274, no. 39, pp. 27573–27577.

    Article  PubMed  CAS  Google Scholar 

  • Nilius, B., Owsianik, G., Voets, T., and Peters, J.A., Transient receptor potential cation channels in disease, Physiol. Rev., 2007, vol. 87, no. 1, pp. 165–217.

    Article  PubMed  CAS  Google Scholar 

  • Nilius, B. and Owsianik, G., The transient receptor potential family of ion channels, Genome Biol., 2011, vol. 12, no. 3, p. 218.

    Article  PubMed  CAS  Google Scholar 

  • Numazaki, M., Tominaga, T., Takeuchi, K., et al., Structural determinant of TRPV1 desensitization interacts with calmodulin, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, no. 13, pp. 8002–8006.

    Article  PubMed  CAS  Google Scholar 

  • Ohanyan, VA., Guarini, G., Thodeti, C.K., et al., Endothelin-mediated in vivo pressor responses following TRPV1 activation, Am. J. Physiol. Heart Circ. Physiol., 2011, vol. 301, no. 3, pp. H1135–H1142.

    Article  PubMed  CAS  Google Scholar 

  • Olah, Z., Szabo, T., Karai, L., et al., Ligand-induced dynamic membrane changes and cell deletion conferred by vanilloid receptor 1, J. Biol. Chem., 2001, vol. 276, no. 14, pp. 11021–11030.

    Article  PubMed  CAS  Google Scholar 

  • Olah, Z., Josvay, K., Pecze, L., et al., Anti-calmodulins and tricyclic adjuvants in pain therapy block the TRPV1 channel, PLoS One, 2007, vol. 2, no. 6, p. e545.

    Article  PubMed  Google Scholar 

  • Raymond, J.R., Turner, J.H., Gelasco, A.K., et al., 5-HT receptor signal transduction pathways, in The Receptors: the Serotonin Receptors: from Molecular Pharmacology to Human Therapeutics, Roth, B.L., Ed., Totowa, New Jersey: Humana Press, 2006, pp. 143–207.

    Google Scholar 

  • Rosenbaum, T., Gordon-Shaag, A., Munari, M., and Gordon, S.E., Ca2+/calmodulin modulates TRPV1 activation by capsaicin, J. Gen. Physiol., 2004, vol. 123, no. 1, pp. 53–62.

    Article  PubMed  CAS  Google Scholar 

  • Saimi, Y. and Kung, C., Calmodulin as an ion channel subunit, Annu Rev. Physiol., 2002, vol. 64, pp. 289–311.

    Article  PubMed  CAS  Google Scholar 

  • Sengupta, P., Ruano, M.J., Tebar, F., et al., Membrane-permeable calmodulin inhibitors (e.g. W-7/W-13) bind to membranes, changing the electrostatic surface potential: dual effect of W-13 on epidermal growth factor receptor activation, J. Biol. Chem., 2007, vol. 282, no. 11, pp. 8474–8486.

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-González, P., Jellali, K., and Villalobo, A., Calmodulin-mediated regulation of the epidermal growth factor receptor, FEBS J., 2010, vol. 277, no. 2, pp. 327–342.

    Article  PubMed  Google Scholar 

  • Tebar, F., Villalonga, P., Sorkina, T., et al., Calmodulin regulates intracellular trafficking of epidermal growth factor receptor and the MAPK signaling pathway, Mol. Biol. Cell, 2002, vol. 13, pp. 2057–2068.

    Article  PubMed  CAS  Google Scholar 

  • Turner, J.H. and Raymond, J.R., Interaction of calmodulin with the serotonin 5-hydroxytryptamine2A receptor. A putative regulator of G protein coupling and receptor phosphorylation by protein kinase C, J. Biol. Chem., 2005, vol. 280, no. 35, pp. 30741–30750.

    Article  PubMed  CAS  Google Scholar 

  • Vennekenspa, R., Emerging concepts for the role of TRP channels in the cardiovascular system, J. Physiol., 2011, vol. 589, no. 7, pp. 1527–1534.

    Article  Google Scholar 

  • Vetter, W.S. and Leclerc, E., Novel aspects of calmodulin target recognition and activation, Eur. J. Biochem. FEBS, 2003, vol. 270, pp. 404–414.

    Article  CAS  Google Scholar 

  • Wang, L.H., Luo, M., Wang, Y.P., et al., Impaired vasodilation in response to perivascular nerve stimulation in mesenteric arteries of TRPV1-null mutant mice, J. Hypertension, 2006, vol. 24, no. 12, pp. 2399–2408.

    Article  CAS  Google Scholar 

  • Wang, D.H., TRPV in hypertension, inflammation, and end organ damage: an imminent target of therapy for cardiovascular disease?, Curr. Opin Cardiol., 2008, vol. 23, no. 4, pp. 356–363.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, H., Murakami, M., Ohba, T., et al., TRP channel and cardiovascular disease, Pharmacol. Ther., 2008, vol. 118, no. 3, pp. 337–351.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X.R., Lin, M.J., McIntosh, L.S., and Sham, J.S.K., Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle, Am. J. Physiol. Lung Cell Mol. Physiol., 2006, vol. 290, pp. L1267–L1276.

    Article  PubMed  CAS  Google Scholar 

  • Yao, X. and Garland, Ch.J., Recent developments in vascular endothelial cell transient receptor potential channels, Circ. Res., 2005, vol. 97, pp. 853–863.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, M. and Yuan, T., Molecular mechanisms of calmodulin’s functional versatility, Biochem. Cell Biol., 1998, vol. 76, nos. 2–3, pp. 313–323.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Kozhevnikova.

Additional information

Original Russian Text © L.M. Kozhevnikova, I.L. Zharkikh, P.V. Avdonin, 2013, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2013, No. 4, pp. 437–446.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozhevnikova, L.M., Zharkikh, I.L. & Avdonin, P.V. Calmodulin inhibitors suppress calcium signaling from serotonin receptors in smooth muscle cells and abolish vasoconstrictive response on intravenous introduction of serotonin. Biol Bull Russ Acad Sci 40, 377–385 (2013). https://doi.org/10.1134/S1062359013040080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359013040080

Keywords

Navigation