Skip to main content
Log in

Determination of mRNA-transcripts and heat shock proteins HSP70 and HSP90 in the retina of the adult Spanish Ribbed Newt Pleurodeles waltl

  • Cell Biology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Expression of genes and heat shock proteins in normal intact retina of the Spanish Ribbed Newt Pleurodeles waltl was studied using polymerase chain reaction, Western blot hybridization, and immunohis-tochemistry. It was shown that the proteins HSP70 and HSP90, as well as their encoding transcripts of relevant genes, are constitutively expressed in eye tissues. These proteins were distributed differentially, and they were characterized by expression of different levels in the retina: HSP70 dominated in the external retina, while HSP90 dominated in the internal one, in particular, in Muller glial cells and the optic nerve. Transcripts and heat shock proteins HSP70 and HSP90 were also found in the retinal pigment epithelium and eye growth zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akerfelt, M., Trouillet, D., Mezger, V., and Sistonen, L., Heat shock factors at a crossroad between stress and development, Ann. N.Y. Acad. Sci., 2007, vol. 1113, pp. 15–27.

    Article  PubMed  CAS  Google Scholar 

  • Ali, A. and Heikkila, J.J., Enhanced accumulation of constitutive heat shock protein mRNA is an initial response of eye tissue to mild hyperthermia in vivo in adult Xenopus laevis, Can. J. Physiol. Pharmacol., 2002, vol. 80, pp. 1119–1123.

    Article  PubMed  CAS  Google Scholar 

  • Ali, A., Salter-Cid, L., Flajnik, M., and Heikkila, J.J., Isolation and characterization of a cDNA encoding a Xenopus 70 kDa heat shock cognate protein, Hsc70.1, Comp. Biochem. Physiol., 1996, vol. 1, pp. 62–69.

    CAS  Google Scholar 

  • Arrigo, A.P. and Simon, S., Expression and functions of heat shock proteins in the normal and pathological mammalian eye, Curr. Mol. Med., 2010, vol. 10, no. 9, pp. 776–793.

    Article  PubMed  CAS  Google Scholar 

  • Beasley, T.C., Tytell, M., and Sweatt, A.J., Heat shock protein 70 in the retina of Xenopus laevis, in vivo and in vitro: effect of metabolic stress, Cell Tissue Res., 1997, vol. 290, pp. 525–538.

    Article  PubMed  CAS  Google Scholar 

  • Borges, J.C. and Ramos, C.H., Protein folding assisted by chaperones, Protein Peptide Lett., 2005, vol. 12, no. 3, pp. 257–261.

    Article  CAS  Google Scholar 

  • Coumailleau, P., Billoud, B., Sourrouille, P., et al., Evidence for a 90 kDa heat-shock protein gene expression in the amphibian oocyte, Dev. Biol., 1995, vol. 168, no. 2, pp. 247–258.

    Article  PubMed  CAS  Google Scholar 

  • Coumailleau, P., Bonnanfant-Jaés, M.-L., Lainé, M.-C., and Angelier, N., Tissue-specific expression of an hsc90 gene and nuclear translocation of the HSC90-related protein during amphibian embryogenesis, Dev. Genes Evol., 1997, vol. 206, no. 6, pp. 397–406.

    Article  CAS  Google Scholar 

  • Dean, D.O., Kent, C.R., and Tytell, M., Constitutive and inducible heat shock protein 70 immunoreactivity in the normal rat eye, Invest. Ophthalmol. Vis. Sci., 1999, vol. 40, pp. 2952–2962.

    PubMed  CAS  Google Scholar 

  • Grigoryan, E., Alternative intrinsic cell sources for neural retina regeneration in adult urodelean amphibians, in Strategies for Retinal Tissue Repair and Regeneration in Vertebrates: From Fish to Human, Chiba, Ch., Ed., India, Trivandrum, 2007, pp. 35–62.

    Google Scholar 

  • Grigoryan, E., Shared triggering mechanisms of retinal regeneration in lower vertebrates and retinal rescue in higher ones, in Tissue Regeneration—From Basic Biology to Clinical Application, Davies, J., Ed., Rijeka, Croatia: InTech., 2012, pp. 145–164.

    Google Scholar 

  • Grigoryan, E.N., Ivanova, I.P., and Poplinskaya, V.A., Discovery of new internal sources of the neural retina regeneration after its detachment in newts: morphological and quantitative studies, Izv. Akad. Nauk, Ser. Biol., 1996, vol. 23, no. 3, pp. 263–274.

    Google Scholar 

  • Grigoryan, E.N., Markitantova, Yu.V., Avdonin, P.P., and Radugina, E.A., Study of Regeneration in amphibians in age of molecular-genetic approaches and methods, Russ. J. Genet., 2013, vol. 49, no. 1, pp. 46–62.

    Article  CAS  Google Scholar 

  • Heikkila, J.J., Heat shock protein gene expression and function in amphibian model systems, Compar. Biochem. Physiol., 2010, vol. 156, no. 1, pp. 19–33.

    Google Scholar 

  • Hong, J.W. and Lee, T.S., The relationship between rabbit corneal opacity and immunohistochemical expression of heat shock protein 72/73 and c-fos after excimer laser photorefractive keratectomy, Ophthalmic Res., 1999, vol. 31, pp. 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Krone, P.H., Heat shock proteins in development, aging, and evolution, Semin. Cell Dev. Biol., 2003, vol. 14, pp. 249–260.

    Article  PubMed  CAS  Google Scholar 

  • Levesque, M., Guimond, J.-Ch., Pilote, M., et al., Expression of heat-shock protein 70 during limb development and regeneration in the axolotl, Dev. Dynam., 2005, vol. 233, pp. 1525–1534.

    Article  CAS  Google Scholar 

  • Missotten, G.S., Journee-de, Korver, J.G., de Wolff-Rouendaal, D., et al., Heat shock protein expression in the eye and in uveal melanoma, Invest. Ophthalmol. Vis. Sci., 2003, vol. 44, pp. 3059–3065.

    Article  PubMed  Google Scholar 

  • Mitashov, V.I., Dynamics of DNA synthesis in pigment epithelium cells of adult tritons during regeneration of the eye following resection of the optic nerve and blood vessels, Tsitologiya, 1970, vol. 12, no. 12, pp. 1521–1529.

    CAS  Google Scholar 

  • Mitashov, V.I., Retinal regeneration in amphibians, Intern. J. Develop. Biol., 1997, vol. 41, pp. 893–905.

    CAS  Google Scholar 

  • Mitashov, V.I., Expression of regulatory and tissue-specific genes controlling regenerative potencies of eye tissues in vertebrates, Russ. J. Dev. Biol., 2007, vol. 38, no. 4, pp. 198–205.

    Article  Google Scholar 

  • Miyamoto, T., Saika, S., Yamanaka, A., et al., Wound healing in rabbit corneas after photorefractive keratectomy and laser in situ keratomileusis, J. Cataract Refract. Surg., 2003, vol. 29, pp. 153–158.

    Article  PubMed  Google Scholar 

  • Parsell, D.A. and Lindquist, S., The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins, Annu. Rev. Genet., 1993, vol. 27, pp. 437–496.

    Article  PubMed  CAS  Google Scholar 

  • Patruno, M., Thorndyke, M.C., Candia Carnevali, M.D., et al., Growth factors, heat-shock proteins and regeneration in echinoderms, J. Exp. Biol., 2001, vol. 204, pp. 843–848.

    PubMed  CAS  Google Scholar 

  • Pearl, E.J., Barker, D., Day, R.C., and Beck, C.W., Identification of genes associated with regenerative success of Xenopus laevis hindlimbs, BMC Dev. Biol., 2008a, vol. 8, p. 66.

    Article  PubMed  Google Scholar 

  • Pearl, L.H., Prodromou, C., and Workman, P., The Hsp90 molecular chaperone: an open and shut case for treatment, Biochem. J., 2008b, vol. 410, pp. 439–453.

    Article  PubMed  CAS  Google Scholar 

  • Qin, Z., Barthel, L.K., and Raymond, P.A., Genetic evidence for shared mechanisms of epimorphic regeneration in zebrafish, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, no. 23, pp. 9310–9315.

    Article  PubMed  CAS  Google Scholar 

  • Tam, Y.K., Vathamany-Globus, S., and Globus, M., Limb amputation and heat-shock induced changes in protein expression in the newt, Notophtalmus viridescens, J. Exp. Zool., 1992, vol. 264, pp. 64–74.

    Article  CAS  Google Scholar 

  • Totan, S., Echo, A., and Yuksel, E., Heat shock proteins modulate keloid formation, Eplasty, 2011, vol. 11, p. e21.

    PubMed  Google Scholar 

  • Tucker, N.R. Middleton, R.C., Le, Q.P., and Shelden, E.A., HSF1 is essential for the resistance of zebrafish eye and brain tissues to hypoxia/reperfusion injury, PLoS One, 2011, vol. 6, no. 7, p. e22268.

    Article  PubMed  CAS  Google Scholar 

  • Urbak, L. and Vorum, H., Heat shock proteins in the human eye, Int. J. Proteomics, 2010, p. 479571.

    Google Scholar 

  • Walsh, D., Li, Z., Wu, Y., and Nagata, K., Heat shock and the role of the hsps during neural plate induction in early mammalian CNS and brain development, Cell Mol. Life Sci., 1997, vol. 53, no. 2, pp. 198–211.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, K., Gaur, V.P., Tytell, M., et al., Ocular distribution of 70-kDa heat-shock protein in rats with normal and dystrophic retinas, Cell Tissue Res., 1991, vol. 264, pp. 497–506.

    Article  PubMed  CAS  Google Scholar 

  • Yeyati, P.L., Bancewicz, R.M., Maule, J., and van Heyningen, V., Hsp90 selectively modulates phenotype in vertebrate development, PLoS Genet., 2007, vol. 3, p. e43.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Grigoryan.

Additional information

Original Russian Text © P.P. Avdonin, Yu.V. Markitantova, V.A. Poplinskaya, E.N. Grigoryan, 2013, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2013, No. 4, pp. 389–397.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avdonin, P.P., Markitantova, Y.V., Poplinskaya, V.A. et al. Determination of mRNA-transcripts and heat shock proteins HSP70 and HSP90 in the retina of the adult Spanish Ribbed Newt Pleurodeles waltl . Biol Bull Russ Acad Sci 40, 343–350 (2013). https://doi.org/10.1134/S106235901304002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106235901304002X

Keywords

Navigation