Skip to main content
Log in

Experimental design as an optimization approach for fabrication a new selective sensor for thallium(I) based on calix[6]arene

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The performance of a new membrane sensor based on polyvinyl chloride (PVC) for Tl(I) assay was investigated using the statistical design as an optimization strategy. The Plackett-Burman and Box-Behnken designs, respectively, were utilized to find out the influencing variables and optimization of conditions. In order to evaluate the relationship between the responses of electrode (slope) and significant variables along with their interactions, a mathematical model was presented. The interactions between significant variables were intuitively illustrated according to the response surface plots. Apart from that, the optimum conditions as a result of response surface methodology for both membrane ingredients and measuring conditions such as pH, PVC, internal solution concentration, calix[6]arene, 2-nitrophenyloctylether, potassium tetrakis-(p-chlorophenyl)borate and time conditioning, respectively, were found to be: 6, 0.028 g, 0.001 M, 0.0035 g, 0.065 g, 0.0015 g and 20 h. The optimized sensor exhibits a Nernstian response for thallium(I) over a wide linear range from 2.0 × 10−6 to 2.0 × 10−2 M and the slope of 57.9 ± 0.1 mV/decade of the activity and limit of detection (LOD) 1.9 × 10−5 M. The relative standard deviations (RSD) for six replicates of the measurement at 1 × 10−5 and 1 × 10−5 M of Tl(I) were 2.7 and 3.0%, respectively. The favorable results were given through the direct determination of Tl(I) in spiked wastewater and artificial spiked urine sample with Tl(I). The electrode was also successfully applied to the titration of a Tl(I) solution with KI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zolgharnein, J., Asanjrani, N., and Mousavi, S.N., CLEAN-Soil, Air, Water, 2007, vol. 39, no. 3, p. 250.

    Article  Google Scholar 

  2. Buhlmann, P., Pretsch, E., and Bakker, E., Chem. Rev., 1997, vol. 97, p. 3083.

    Article  Google Scholar 

  3. Buhlmann, P., Pretsch, E., and Bakker, E., Chem. Rev., 1998, vol. 98, p. 1593.

    Article  Google Scholar 

  4. Shamsipur, M., Kazemi, S.Y., Sharghi, H., and Niknam, Kh., Fresenius J. Anal. Chem., 2001, vol. 371, p. 1104.

    Article  CAS  Google Scholar 

  5. Kazemi, S.Y., Shamsipur, M., and Sharghi, H., J. Hazard. Mat., 2009, vol. 172, p. 68.

    Article  CAS  Google Scholar 

  6. Izatt, R.M., Pawlak, K., and Bradshaw, J.S., Chem. Rev., 1991, vol. 91, p. 1721.

    Article  CAS  Google Scholar 

  7. Kazemi, S.Y., Hamidi, A.S., Asanjarani, N., and Zolgharnein, J., Talanta, 2010, vol. 81, p. 1681.

    Article  CAS  Google Scholar 

  8. Farhadi, Kh., Bahram, M., Shokatynia, D., and Salehiyan, F., Talanta, 2008, vol. 76, p. 320.

    Article  CAS  Google Scholar 

  9. Shamsipur, M., Kazemi, S.Y., Niknam, Kh., and Sharghi, H., Bull. Korean Chem. Soc., 2002, vol. 23, p. 53.

    Article  CAS  Google Scholar 

  10. Khayatian, Gh., Shariati, S., and Salimi, A., Bull. Korean Chem. Soc., 2003, vol. 24, p. 421.

    Article  CAS  Google Scholar 

  11. Park, K.S., Jung, S.O., Lee, S.S., and Kim, J.S., Bull. Korean Chem. Soc., 2000, vol. 21, p. 909.

    CAS  Google Scholar 

  12. Ganjali, M.R., Pourjavid, M.R., Mouradzadegun, A., Hosseini, M., and Mizani, F., Bull. Korean Chem. Soc., 2003, vol. 24, p. 15.

    Article  Google Scholar 

  13. Kimura, K., Tatsumi, K., Yokoyama, M., Ouchic, M., and Mocerino, M., Anal. Commun., 1999, vol. 36, p. 229.

    Article  CAS  Google Scholar 

  14. Zolgharnein, J., Azimi, Gh., and Habibi, M., J. Chem. Soc. Pak., 2007, vol. 29, p. 487.

    CAS  Google Scholar 

  15. Zolgharnein, J., Shahmoradi, A., and Sangi, M.R., Talanta, 2008, vol. 76, p. 528.

    Article  CAS  Google Scholar 

  16. Zolgharnein, J., Adhami, Zh., Shahmoradi, A., and Mousavi, S.N., Anal. Sci., 2010, vol. 11, p. 111.

    Article  Google Scholar 

  17. Ferreira, S.L.C., dos Santoz, W.N.L., Quintella, C.M., Neto, B.B., and Boque-Sandra, J.A., Talanta, 2004, vol. 63, p. 1061.

    Article  CAS  Google Scholar 

  18. Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S. and Esclaleira, L.A., Talanta, 2008, vol. 76, p. 965.

    Article  CAS  Google Scholar 

  19. Massart, D.L., Vandeginste, B.G.M., Buydens, L.M.C., de Jong, S., Lewi, P.J., and Smeyers-Verbeke, J., Handbook of Chemometrics and Qualimetrics. Part A, Amsterdam: Elsevier, 2003.

    Google Scholar 

  20. Montgomery, D.C., Design and Analysis of Experiments, New York: Wiley, 2001, 5th ed.

    Google Scholar 

  21. Zolgharnein, J. and Shahmoradi, A., J. Chem. Eng. Data, 2010, vol. 55, no. 11, p. 5040.

    Article  CAS  Google Scholar 

  22. Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., David, J.M., and Brandao, G.C., da Silva, E.G.P., Portugal, L.A., dos Reis, P.S., Souza, A.S., and dos Santos, W.N.L., Anal. Chim. Acta, 2007, vol. 597, p. 179.

    Article  CAS  Google Scholar 

  23. Farhadi, Kh., Bahram, M., Shokatynia, D., and Salehiyan, F., Anal. Lett., 2008, vol. 41, p. 2097.

    Article  CAS  Google Scholar 

  24. Tarley, C.R.T., Silveira, G., dos Santos, W.N.L., Matos, G.D., da Silva, E., Miro, M. and Ferreirac, S.L.C., Microchem. J., 2009, vol. 92, p. 58.

    Article  CAS  Google Scholar 

  25. Bruns, R.E., Scarmino, I.S., and de Barros Neto, B., Statistical Design-Chemometrics, Amsterdam: Elsevier, 2006.

    Google Scholar 

  26. Palukurty, M.A., Telgana, N.K., Bora, H.S.R., and Mulampaka, Sh.N., Afr. J. Microbiol. Res., 2008, vol. 2, p. 087.

    Google Scholar 

  27. Anisha, G.S., Sukumaran, R.K., and Prema, P., Food Technol. Biotechnol., 2008, vol. b46, p. 171.

    Google Scholar 

  28. Craggs, A., Moody, G.J., and Thomas, J.D., Ion-Selective Electrodes in Analytical Chemistry, New York: Plenum, 1978.

    Google Scholar 

  29. Plackett, R.L., and Burman, J.P., Biometrika, 1964, vol. 33, p. 305.

    Article  Google Scholar 

  30. Guo, W.-Q., Ren, N.-Q., Wang, X.-J., Xiang, W.-Sh., Ding, J., You, Y., and Liu, B.F., Bioresour. Technol., 2009, vol. 100, p. 1192.

    Article  CAS  Google Scholar 

  31. Miller, J.N. and Miller, J.C., Statistics and Chemometrics for Analytical Chemistry, Dorchester: Dorset Press, 2000, 4th ed.

    Google Scholar 

  32. Anderson, R.L., Practical Statistics for Analytical Chemists, New York: Van Nostrand Reinhold, 1987.

    Google Scholar 

  33. IUPAC Analytical Chemistry Division, Pure Appl., Chem., 1976, vol. 48, p. 127.

    Google Scholar 

  34. Anker, P., Wieland, E., Ammann, D., Dohner, R.E., Asper, R., and Simon, W., Anal. Chem., 1981, vol. 53, p. 1970.

    Article  CAS  Google Scholar 

  35. Verpoorte, E.M.J., Chan, A.D.C., and Harrison, D., J. Electroanal., 1993, vol. 5, p. 845.

    Article  CAS  Google Scholar 

  36. Gehring, P.M., Morf, W.E., Pretch, E., and Simon, W., Helv. Chim. Acta., 1990, vol. 73, p. 203.

    Article  Google Scholar 

  37. Singh, A.K., Panwar, A., Kumar, S., and Baniwal, S., Analyst, 1999, vol. 124, p. 521.

    Article  CAS  Google Scholar 

  38. Oesch, U. and Simon, W., Anal. Chem., 1980, vol. 52, p. 692.

    Article  CAS  Google Scholar 

  39. Umezawa, Y., Umezawa, K., and Sato, H., Pure. Appl. Chem., 1995, vol. 67, p. 507.

    Article  Google Scholar 

  40. Burguera, J.L., Burguera, M., Anton, R.E., Salager, J.L., Arandia, M.A., Rondon, C., Carrero, P., de Pena, Y.P., Brunetto, R., and Gallignani, M., Talanta, 2005, vol. 68, p. 179.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zolgharnein.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, S.Y., Hamidi, A.S., Zolgharnein, J. et al. Experimental design as an optimization approach for fabrication a new selective sensor for thallium(I) based on calix[6]arene. J Anal Chem 69, 646–655 (2014). https://doi.org/10.1134/S1061934814070089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934814070089

Keywords

Navigation