Skip to main content
Log in

Supramolecular Self-Assembly of Hybrid Colloidal Systems

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Hybrid materials compose a new class of nanostructured free- or bound-disperse systems that combine organic and inorganic components in their composition. The properties of the hybrid materials are governed by the known colloid-chemical regularities. The phenomenon of the synergism in the properties of such materials is realized due to the interaction between system components at interfaces and depends on the structural order of the systems. In the last decade, a new field of researches has appeared, i.e., supramolecular self-assembly, which implies the simultaneous or successive integration of components into a unified structure via the formation of numerous noncovalent (hydrogen, ionic, coordination, etc.) bonds. This review lets readers get acquainted with different types of supramolecular self-assembly of hybrid nanosystems at interfaces. The methods of forming hybrid systems are discussed by the examples of mixtures of classical cationic surfactants and functionalized zinc porphyrinates used as organic linkers in combination with spherical metal nanoparticles and planar inorganic matrices (graphene oxide and layered hydroxides of rare-earth metals). The relation between the structure and properties of hybrid materials are considered in detail, and the possible practical applications and the perspectives of the development of this field of colloid chemistry for the nearest decade are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Li, H., Fahrenbach, A.C., Coskun, A., et al., Angew. Chem., 2011, vol. 123, no. 30, p. 6914.

    Article  Google Scholar 

  2. Wu, C., Qiao, X., Robertson, C.M., et al., Angew. Chem., 2020, vol. 132, no. 29, p. 12127.

    Article  Google Scholar 

  3. Lehn, J.–M., Essays Contemp. Chem., 2007, p. 307.

  4. Wang, J., Wang, J., Ding, P., et al., Angew. Chem., 2018, vol. 130, no. 39, p. 12862.

    Article  Google Scholar 

  5. Steed, J.W. and Atwood, J.L., Supramolecular Chemistry, John Wiley & Sons, 2022. 3rd ed.

    Google Scholar 

  6. Antipin, I.S., Alfimov, M.V., Arslanov, V.V., et al., Russ. Chem. Rev., 2021, vol. 90, no. 8, p. 895.

    Article  Google Scholar 

  7. Faustini, M., Nicole, L., Ruiz-Hitzky, E., et al., Adv. Funct. Mater., 2018, vol. 28, no. 27, p. 1704158.

    Article  Google Scholar 

  8. Gao, R., Kodaimati, M.S., and Yan, D., Chem. Soc. Rev., 2021, vol. 50, no. 9, p. 5564.

    Article  CAS  Google Scholar 

  9. Saveleva, M.S., Eftekhari, K., Abalymov, A., et al., Front. Chem., 2019, vol. 7, no. APR, p. 179.

    Article  CAS  Google Scholar 

  10. Kudiiarov, V., Lyu, J., Semenov, O., et al., Applied Mater. Today, 2021, vol. 25, p. 101208.

    Google Scholar 

  11. Zvyagina, A.I., Ezhov, A.A., Meshkov, I.N., et al., J. Mater. Chem. C, 2018, vol. 6, no. 6, p. 1413.

    Article  CAS  Google Scholar 

  12. Niazov–Elkan, A., Weissman, H., Dutta, S., et al., Adv. Mater., 2018, vol. 30, no. 2, p. 1705027.

    Article  Google Scholar 

  13. Chen, X., Yu, Z., Wei, L., et al., J. Mater. Chem. A, 2019, vol. 7, no. 2, p. 764.

    Article  CAS  Google Scholar 

  14. Jin, X., Gu, T.H., Kwon, N.H., et al., Adv. Mater., 2021, vol. 33, no. 47, p. 2005922.

    Article  CAS  Google Scholar 

  15. Zvyagina, A.I., Shiryaev, A.A., Baranchikov, A.E., et al., New J. Chem., 2017, vol. 41, no. 3, p. 948.

    Article  CAS  Google Scholar 

  16. Gusarova, E.A., Zvyagina, A.I., Aleksandrov, A.E., et al., Colloids and Interface Science Communications, 2022, vol. 46, p. 100575.

    Article  CAS  Google Scholar 

  17. Raucci, M.G., Demitri, C., Soriente, A., et al., J. Biomed. Mater. Res., Part A, 2018, vol. 106, no. 7, p. 2007.

    Article  CAS  Google Scholar 

  18. Zhang, Z., Zhang, P., Wang, Y., et al., Polym. Chem., 2016, vol. 7, no. 24, p. 3950.

    Article  CAS  Google Scholar 

  19. Li, C., Iscen, A., Sai, H., et al., Nat. Mater., 2020, vol. 19, no. 8, p. 900.

    Article  CAS  Google Scholar 

  20. Guarrotxena, N., García O., and Quijada–Garrido, I., Sci. Rep., 2018, vol. 8, no. 1, p. 5721.

    Article  Google Scholar 

  21. Yu, Q., Sun, N., Hu, D., et al., Polym. Chem., 2021, vol. 12, no. 29, p. 4184.

    Article  CAS  Google Scholar 

  22. Zhao, H., Liu, M., Zhang, Y., et al., Nanoscale, 2020, vol. 12, no. 28, p. 14976.

    Article  CAS  Google Scholar 

  23. Fernandes, T., Daniel–da-Silva, A.L., and Trindade, T., Coord. Chem. Rev., 2022, vol. 460, p. 214483.

    Article  CAS  Google Scholar 

  24. Sun, D. and Li, Z., J. Phys. Chem. C, 2016, vol. 120, no. 35, p. 19744.

    Article  CAS  Google Scholar 

  25. Gorbunova, Y.G., Enakieva, Y.Y., Volostnykh, M.V., et al., Russ. Chem. Rev., 2022, vol. 91, no. 4, p. 1.

    Google Scholar 

  26. Pan, Q., Abdellah, M., Cao, Y., et al., Nat. Commun., 2022, vol. 13, no. 1, p. 845.

    Article  CAS  Google Scholar 

  27. Guselnikova, O., Postnikov, P., Elashnikov, R., et al., Colloids Surf., A, 2017, vol. 516, p. 274.

    Article  CAS  Google Scholar 

  28. Kalinina, M.A., Colloid J., 2015, vol. 77, no. 5, p. 537.

    Article  CAS  Google Scholar 

  29. Riegler, H. and Spratte, K., Thin Solid Films, 1992, vols. 210–211, part 1, p. 9.

    Article  Google Scholar 

  30. Huang, S., Tsutsui, G., Sakaue, H., et al., J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct., 2001, vol. 19, no. 6, p. 2045.

    Article  CAS  Google Scholar 

  31. Babenko, D.I., Ezhov, A.A., Turygin, D.S., et al., Langmuir, 2012, vol. 28, no. 1, p. 125.

    Article  CAS  Google Scholar 

  32. Zvyagina, A.I., Meshkov, I.N., Ezhov, A.A., et al., Colloids Surf., A, 2016, vol. 509, p. 376.

    Article  CAS  Google Scholar 

  33. Zvyagina, A.I., Ezhov, A.A., Ivanov, V.K., et al., J. Mater. Chem., vol. 3, no. 45, p. 11801.

  34. Marikhin, V.A., Guk, E.G., and Myasnikova, L.P., Phys. Solid State, 1997, vol. 39, no. 4, p. 686.

    Article  Google Scholar 

  35. Gliemann, H. and Wöll, C., Mater. Today, 2012, vol. 15, no. 3, p. 110.

    Article  CAS  Google Scholar 

  36. Zacher, D., Schmid, R., Wöll, C., et al., Angew. Chem., 2011, vol. 50, no. 1, p. 176.

    Article  CAS  Google Scholar 

  37. Agafonov, M.A., Alexandrov, E.V., Artyukhova, N.A., et al., J. Struct. Chem., 2022, vol. 63, no. 5, p. 671.

    Article  CAS  Google Scholar 

  38. Xiao, Y.H., Gu, Z.G., and Zhang, J., Nanoscale, 2020, vol. 12, no. 24, p. 12712.

    Article  CAS  Google Scholar 

  39. Heinke, L. and Wöll, C., Adv. Mater., 2019, vol. 31, no. 26, p. 1806324.

    Article  Google Scholar 

  40. Guselnikova, O., Postnikov, P., Kolska, Z., et al., Applied Mater. Today, 2020, vol. 20, p. 100666.

    Google Scholar 

  41. Meshkov, I.N., Zvyagina, A.I., Shiryaev, A.A., et al., Langmuir, 2018, vol. 34, no. 18, p. 5184.

    Article  CAS  Google Scholar 

  42. Mozer, A.J., Griffith, M.J., Tsekouras, G., et al., J. Am. Chem. Soc., 2009, vol. 131, no. 43, p. 15621.

    Article  CAS  Google Scholar 

  43. Kim, Y., Kim, Y.J., and Park, J.Y., Langmuir, 2020, vol. 36, no. 14, p. 3792.

    Article  CAS  Google Scholar 

  44. Laokroekkiat, S., Hara, M., Nagano, S., et al., Langmuir, 2016, vol. 32, no. 26, p. 6648.

    Article  CAS  Google Scholar 

  45. So, M.C., Jin, S., Son, H.J., et al., J. Am. Chem. Soc., 2013, vol. 135, no. 42, p. 15698.

    Article  CAS  Google Scholar 

  46. Kutenina, A.P., Zvyagina, A.I., Raitman, O.A., et al., Colloid J., 2019, vol. 81, no. 4, p. 401.

    Article  CAS  Google Scholar 

  47. So, M.C., Beyzavi, M.H., Sawhney, R., et al., Chem. Commun., 2015, vol. 51, no. 1, p. 85.

    Article  CAS  Google Scholar 

  48. Zvyagina, A.I., Shiryaev, A.A., Baranchikov, A.E., et al., New J. Chem., 2017, vol. 41, no. 3, p. 948.

    Article  CAS  Google Scholar 

  49. Lim, J.Y., Mubarak, N.M., Abdullah, E.C., et al., J. Ind. Eng. Chem., 2018, vol. 66, p. 29.

    Article  CAS  Google Scholar 

  50. Zvyagina, A.I., Melnikova, E.K., Averin, A.A., et al., Carbon, 2018, vol. 134, p. 62.

    Article  CAS  Google Scholar 

  51. Sun, Z., Feng, T., and Russell, T.P., Langmuir, 2013, vol. 29, no. 44, p. 13407.

    Article  CAS  Google Scholar 

  52. Zvyagina, A.I., Gusarova, E.A., Baranchikov, A.E., et al., Surf. Innovations, 2019, vol. 7, nos. 3–4, p. 210.

    Article  Google Scholar 

  53. Chevalier, Y. and Bolzinger, M.-A., Colloids Surf., A, 2013, vol. 439, p. 23.

    Article  CAS  Google Scholar 

  54. Kim, J., Cote, L.J., Kim, F., et al., J. Am. Chem. Soc., 2010, vol. 132, no. 23, p. 8180.

    Article  CAS  Google Scholar 

  55. Nugmanova, A.G. and Kalinina, M.A., Colloid J., 2021, vol. 83, no. 5, p. 614.

    Article  CAS  Google Scholar 

  56. Nugmanova, A.G., Safonova, E.A., Baranchikov, A.E., et al., Appl. Surf. Sci., 2022, vol. 579, p. 152080.

    Article  CAS  Google Scholar 

  57. Zhu, D., Liu, J., Zhao, Y., et al., Small, 2019, vol. 15, no. 14.

  58. Giannakoudakis, D.A. and Bandosz, T.J., Molecules, 2019, vol. 24, no. 24, p. 4529.

    Article  CAS  Google Scholar 

  59. Wang, P., Li, H., Gao, Q., et al., J. Mater. Chem. A, 2014, vol. 2, no. 44, p. 18731.

    Article  CAS  Google Scholar 

  60. Wang, B., Shang, J., Guo, C., et al., Small, 2019, vol. 15, no. 6, p. 1804761.

    Article  Google Scholar 

  61. Sokolov, M.R., Enakieva, Y.Y., Yapryntsev, A.D., et al., Adv. Funct. Mater., 2020, vol. 30, no. 27, p. 2000681.

    Article  CAS  Google Scholar 

  62. Han, Q., Zhang, L., He, C., et al., Inorg. Chem., 2012, vol. 51, no. 9, p. 5118.

    Article  CAS  Google Scholar 

  63. Lomova, E.M., Turygin, D.S., and Ezhov, A.A., et al., J. Phys. Chem. B, 2009, vol. 113, p. 8581.

    Article  CAS  Google Scholar 

  64. Zheng, F., Xu, W.L., Jin, H.D., et al., RSC Adv., 2015, vol. 5, no. 109, p. 89515.

    Article  CAS  Google Scholar 

  65. Balasubramanian, N. and Subrahmanyam, A., J. Electrochem. Soc., 1991, vol. 138, no. 1, p. 322.

    Article  CAS  Google Scholar 

  66. Michaelson, H.B., J. Appl. Phys., 1977, vol. 48, no. 11, p. 4729.

    Article  CAS  Google Scholar 

  67. Nishide, J.I., Oyamada, T., Akiyama, S., et al., Adv. Mater., 2006, vol. 18, no. 23, p. 3120.

    Article  CAS  Google Scholar 

  68. Diskin-Posner, Y., Dahal, S., and Goldberg, I., Chem. Commun., 2000, no. 7, p. 585.

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 20-13-00279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kalinina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nugmanova, A.G., Kalinina, M.A. Supramolecular Self-Assembly of Hybrid Colloidal Systems. Colloid J 84, 642–662 (2022). https://doi.org/10.1134/S1061933X22700107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X22700107

Keywords:

Navigation