Skip to main content
Log in

Defect structure of nanosized mechanically activated MoO3

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Defect structure of mechanically activated MoO3 has been studied with the use of X-ray diffraction, Raman spectroscopy, electron paramagnetic resonance, laser granulometry, and adsorption methods. Two stages of mechanical activation have been distinguished. At mechanical activation doses below 1 kJ/g, the fracture of oxide particles is the main process. At this stage, MoO3 particle sizes decrease from 30 μm to 60 nm and specific surface area linearly increases to 30 m2/g, the sizes of coherent-scattering regions decrease to 18 nm, paramagnetic centers are accumulated, and the Raman spectral bands corresponding to three different types of Mo-O bonds widen and shift. At doses above 1 kJ/g, the main process consists in the friction and aggregation of particles, which is accompanied by some reduction in the specific surface area and an increase in the particle sizes. At the stage of friction, the phase transition from an orthorhombic modification to a monoclinic modification of MoO3 occurs seemingly due to a shift of one layer of the material in plane (100). The shift is accompanied by the accumulation of lattice microstrains in the same plane, formation of “stressed” Mo-O-Mo bridge bonds, and a substantial rise in the concentration of Mo5+ radicals. The maximum total concentration of paramagnetic centers is 1 × 1018 g−1. It may be assumed that the radicals are formed due to the rupture of the most stressed molybdenum-oxygen bridge bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao, J.N., Loo, B.H., Hashimoto, K., and Fujishima, A., Ber. Bunsen-Ges. Phys. Chem., 1991, vol. 95, p. 554.

    Article  CAS  Google Scholar 

  2. Dickens, P.G. and Reynolds, G.J., Solid State Ionics, 1981, vol. 5, p. 331.

    Article  CAS  Google Scholar 

  3. Pichat, P., Mozzanega, M.-N., and Can, H.-V., J. Phys. Chem., 1988, vol. 92, p. 467.

    Article  CAS  Google Scholar 

  4. Pope, M.T., Heteropoly and Isopoly Oxometalates, Berlin: Springer, 1993.

    Google Scholar 

  5. Dolgoborodov, A.Yu., Makhov, M.N., Kolbanev, I.V., Streletskii, A.N., and Fortov, V.E., JETP Lett., 2005, vol. 81, p. 311.

    Article  CAS  Google Scholar 

  6. Dolgoborodov, A.Yu., Makhov, M.N., Kolbanev, I.V., and Streletskii, A.N., RF Patent no. 2235085, 2004.

  7. Baláž, P., Achimoviĉová, M., Baláž, M., Billik, P., Cherkezova-Zheleva, Z., Criado, J.M., Delogu, F., Dutková, E., Gaffet, E., Gotor, F.J., Kumar, R., Mitov, I., Rojac, T., Senna, M., Streletskii, A., and Wieczorek-Ciurowa, K., Chem. Soc. Rev., 2013, vol. 42, p. 7571.

    Article  Google Scholar 

  8. Mestl, G., Herzog, B., Schlögl, R., and Knözinger, H., Langmuir, 1995, vol. 11, p. 3027.

    Article  CAS  Google Scholar 

  9. Mestl, G., Verbruggen, N.F.D., and Knözinger, H., Langmuir, 1995, vol. 11, p. 3035.

    Article  CAS  Google Scholar 

  10. Mestl, G., Verbruggen, N.F.D., and Knözinger, H., Langmuir, 1995, vol. 11, p. 3795.

    Article  CAS  Google Scholar 

  11. Mestl, G., Verbruggen, N.F.D., Lange, F.C., Tesche, B., and Knözinger, H., Langmuir, 1996, vol. 12, p. 1817.

    Article  CAS  Google Scholar 

  12. Mestl, G., Verbruggen, N.F.D., Bosch, E., and Knözinger, H., Langmuir, 1996, vol. 12, p. 2961.

    Article  CAS  Google Scholar 

  13. Poluboyarov, V.A., Kiselevich, S.N., Kirichenko, O.A., Pauli, I.A., Korotaeva, Z.A., Dektyarev, S.P., and Ancharov, A.I., Inorg. Mater., 1998, vol. 34, p. 1152.

    CAS  Google Scholar 

  14. Litvin, N.S., Khalameida, S.V., and Zazhigalov, V.A., Dopov. Akad. Nauk Ukr., 2010, no. 9, p. 108.

    Google Scholar 

  15. Streletskii, A.N., Kolbanev, I.V., Dolgoborodov, A.Yu., and Borunova, A.B., in Gorenie i vzryv. Vyp. 4 (Combustion and Explosion), Frolov, S.M., Ed., Moscow: Torus, 2011, no. 4, p. 166.

  16. Streletskii, A.N., Structural Applications of Mechanical Alloying (2 Int. Conf.), De Barbadillo, J.J., Froes, F.H., and Schwarz, R.B., Eds., ASM Int., 1993, p. 51.

  17. Shelekhov, E.V. and Sviridova, T.A., Metalloved. Term. Obrab. Met., 2000, no. 8, p. 16.

    Google Scholar 

  18. Papakondylis, A. and Sautet, P., J. Phys. Chem., 1996, vol. 100, p. 10681.

    Article  CAS  Google Scholar 

  19. Streletskii, A.N. and Butyagin, P.Yu., Kinet. Catal., 1980, vol. 21, p. 770.

    CAS  Google Scholar 

  20. McCarron, E.M. and Calabrese, J.C., J. Solid State Chem., 1991, vol. 91, p. 121.

    Article  CAS  Google Scholar 

  21. Baker, B., Feist, T.P., and McCarron, E.M., J. Solid State Chem., 1995, vol. 119, p. 199.

    Article  CAS  Google Scholar 

  22. Liu, D., Lei, W.W., Hao, J., Liu, D.D., Liu, B.B., Wang, X., Chen, X.H., Cui, Q.L., Zou, G.T., Liu, J., and Jiang, S., J. Appl. Phys., 2009, vol. 105, p. 023513.

    Article  Google Scholar 

  23. Py, M.A., Schmid, Ph.E., and Vallin, J.T., Nuovo Cimento Soc. Ital. Fis. B, 1976, vol. 38, p. 271.

    Article  Google Scholar 

  24. Dyrek, K. and Labanowska, M., J. Chem. Soc., Faraday Trans., 1991, vol. 87, p. 1003.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Streletskii.

Additional information

Original Russian Text © M.V. Sivak, A.N. Streletskii, I.V. Kolbanev, A.V. Leonov, E.N. Degtyarev, D.G. Permenov, 2015, published in Kolloidnyi Zhurnal, 2015, Vol. 77, No. 3, pp. 355–363.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivak, M.V., Streletskii, A.N., Kolbanev, I.V. et al. Defect structure of nanosized mechanically activated MoO3 . Colloid J 77, 333–340 (2015). https://doi.org/10.1134/S1061933X15030163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X15030163

Keywords

Navigation