Skip to main content
Log in

Low-temperature mechanochemical synthesis of nanosized silicon carbide

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The methods of X-ray diffraction analysis, scanning electron microscopy, synchronous thermal analysis, and adsorption are used to study the mechanochemical synthesis of silicon carbide through the reaction Si + C → β-SiC. The reaction is found to take place in several stages. At the first stage, i.e., at activation doses below approximately 5 kJ/g, the powders of the components are independently ground to increase the specific surface area of the mixture to 145 m2/g, graphite is amorphized, and the sizes of the coherent-scattering regions of silicon drastically diminish. At the second stage (doses of 5–15 kJ/g), dense Si/C aggregates are formed and two fractions (coarse and fine) with different particle sizes arise in silicon crystallites. As the activation dose is enhanced, the amount of the fine fraction rises, while the sizes of coherent-scattering regions decrease to 2–3 nm. When samples are heated at 800°C, the fine fraction of silicon interacts with carbon to yield silicon carbide with crystallite sizes of 3–4 nm, whereas the coarse fraction of silicon recrystallizes. At the third stage, i.e., at doses of higher than 15 kJ/g, the mechanochemical synthesis of SiC occurs through the following scheme: fine fraction Si + C → amorphous SiC → crystallization of SiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gnesin, G.G., Karbidokremnievye materialy (Silicon Carbide Materials), Moscow: Metallurgiya, 1977.

    Google Scholar 

  2. Filonov, K.N., Kurlov, V.N., Klassen, N.V., et al., Izv. Akad. Nauk, Ser. Fiz., 2009, vol. 73, p. 1460.

    CAS  Google Scholar 

  3. Fan, J.Y., Wu, X.L., and Chu, P.K., Prog. Mater. Sci., 2006, vol. 51, p. 983.

    Article  CAS  Google Scholar 

  4. Andrievskii, R.A., Usp. Khim., 2009, vol. 78, p. 889.

    Google Scholar 

  5. Yang, Y., Yang, K., Lin, Z.-M., and Li, J.-T., J. Eur. Ceram. Soc., vol. 29, p. 175.

  6. Matteazzi, P., Basset, D., Miani, F., and LeCaer, G., Nanostruct. Mater., 1993, vol. 2, p. 217.

    Article  CAS  Google Scholar 

  7. El-Eskandarany, M.S., Sumiyama, K., and Suzuki, K., J. Mater. Res., 1995, vol. 10, p. 659.

    Article  Google Scholar 

  8. Chaira, D., Mishra, B.K., and Sangal, S., Mater. Sci. Eng. A, 2007, vols. 460–461, p. 111.

    Google Scholar 

  9. Yang, Z.G. and Shaw, L.L., Nanostruct. Mater., 1996, vol. 7, p. 873.

    Article  CAS  Google Scholar 

  10. Abderrazak, H. and Abdellaoui, M., Mater. Lett., 2008, vol. 62, p. 3839.

    Article  CAS  Google Scholar 

  11. Koch, C.C., Shen, T.D., and Fahmy, Y., Mater. Sci. Forum, 1997, vols. 235–238, p. 487.

    Article  Google Scholar 

  12. Gaffe, E. and Harmelin, M., J. Less-Common Met., 1990, vol. 157, p. 201.

    Article  Google Scholar 

  13. Bokchonov, B.B., Konstanchuk, I.J., and Boldyrev, V.V., J. Alloys Compd., 1993, vol. 191, p. 239.

    Article  Google Scholar 

  14. Streletskii, A.N., Leonov, A.V., and Butyagin, P.Yu., Kolloidn. Zh., 2001, vol. 63, p. 690.

    Google Scholar 

  15. Streletskii, A.N., Mudretsova, S.N., Maiorova, A.F., et al., Kolloidn. Zh., 2001, vol. 63, p. 695.

    Google Scholar 

  16. Butyagin, P.Yu., Streletskii, A.N., Berestetskaya, I.V., and Borunova, A.B., Kolloidn. Zh., 2001, vol. 63, p. 699.

    Google Scholar 

  17. Streletskii, A.N., Leonov, A.V., Berestetskaja, I.V., et al., Metastable Nanocryst. Mater., 2002, vol. 13, p. 187.

    Article  Google Scholar 

  18. Borunova, A.B., Zhernovenkova, Yu.V., Streletskii, A.N., and Portnoi, V.K., Obrab. Dispersn. Mater. Sred, 1999, no. 9, p. 158.

  19. Streletskii, A.N., Abstracts of Papers, 2nd Int. Conf. on Structural Applications of Mechanical Alloying, Vancouver, 1993, p. 2.

  20. Shelekhov, E.V., Abstracts of Papers, Natl. Conf. on X-Ray, SR, Neutrons and Electrons Application for Materials Science Investigation, Dubna, 1997, vol. 3, p. 316.

    Google Scholar 

  21. Gorelik, S.S., Skakov, Yu.A., and Rastorguev, L.N., Rentgenograficheskii i elektronno-opticheskii analiz (X-Ray Diffraction and Electron-Optical Analyses), Moscow: Mosk. Inst. Stali Splavov, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.B. Borunova, A.N. Streletskii, S.N. Mudretsova, A.V. Leonov, P.Yu. Butyagin, 2011, published in Kolloidnyi Zhurnal, 2011, Vol. 73, No. 5, pp. 599–607.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borunova, A.B., Streletskii, A.N., Mudretsova, S.N. et al. Low-temperature mechanochemical synthesis of nanosized silicon carbide. Colloid J 73, 605–613 (2011). https://doi.org/10.1134/S1061933X1104003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X1104003X

Keywords

Navigation