Skip to main content
Log in

Surface charge of detonation nanodiamond particles in aqueous solutions of simple 1 : 1 Electrolytes

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Adsorption isotherms of potential-determining H+ and OH ions and the pH dependences of the specific surface charge of detonation nanodiamond (DND) particles are obtained in a pH range of 3–10 by the acid-base titration of their hydrosols containing 0.001–1 M LiCl, NaCl, KCl, NaNO3, KNO3, and NaClO4 as background electrolytes. The data obtained attest to the chemical nonuniformity (heterogeneity) of a DND surface and different degrees of binding of background electrolyte cations and anions with ionized groups. It is revealed that the adsorption of OH-anions diminishes in the lyotropic series of cations Na+ > K+ > Li+ and increases with a decrease in the adsorbability of anions in the following series: NO 3 ≊ ClO 4 > Cl. The adsorption of potential-determining H+ and OH ions on a DND surface containing two types of functional groups, i.e., acidic carboxyl and amphoteric hydroxyl groups, is simulated by the Protofit software package. The optimal surface densities and ionization constants that correspond to minimal deviations of model adsorption isotherms from the experimental curves are found for these groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lyamkin, A.I., Petrov, E.A., Ershov, A.P., et al., Dokl. Akad. Nauk SSSR, 1988, vol. 302, p. 611.

    CAS  Google Scholar 

  2. Greiner, N.R., Philips, D.S., and Volk, F., Nature (London), 1988, vol. 333, p. 440.

    Article  CAS  Google Scholar 

  3. Dolmatov, V.Yu., in Ultra-Nanocrystalline Diamond: Synthesis, Properties and Applications, Shenderova, O. and Gruen, D., Eds., New York: William Andrew, 2006, p. 379.

    Google Scholar 

  4. Baidakova, M. and Vul’, A., J. Phys. D: Appl. Phys., 2007, vol. 40, p. 6300.

    Article  CAS  Google Scholar 

  5. Schrand, A.M., Ciftan Hens, S.A., and Shenderova, O.A., Crit. Rev. Solid State Mater. Sci., 2009, vol. 34, p. 18.

    Article  CAS  Google Scholar 

  6. Synthesis, Properties and Applications of Ultrananocrystalline Diamond, Gruen, D., Shenderova, O., and Vul’ A.Ya, Eds., Dordrecht: Springer, 2005.

    Google Scholar 

  7. Ultra-Nanocrystaline Diamond: Synthesis, Properties and Applications, Shenderova, O. and Gruen, D., Eds., New York: William Andrew, 2006.

    Google Scholar 

  8. Aleksenskiy, A., Baidakova, M., Osipov, V., and Vul’, A., in Nanodiamonds: Applications in Biology and Nanoscale Medicine, Ho, D., Ed., Dordrecht: Springer, 2009.

    Google Scholar 

  9. Shchukin, E.D., Pertsov, A.V., and Amelina, E.A., Kolloidnaya khimiya (Colloid Chemistry), Moscow: Vysshaya Shkola, 2004.

    Google Scholar 

  10. Kruger, A., Kataoka, F., Ozawa, M., et al., Carbon, 2005, vol. 43, p. 1722.

    Article  Google Scholar 

  11. Kruger, A., Ozawa, M., Jarre, G., et al., Phys. State Solidi A, 2007, vol. 204, p. 2881.

    Article  Google Scholar 

  12. Hartiey, Ch.J. and Shergold, H.L., Int. J. Miner. Process., 1982, vol. 9, p. 219.

    Article  Google Scholar 

  13. Shenderova, O., Petrov, I., Walsh, J., et al., Diamond Relat. Mater., 2006, vol. 15, p. 1799.

    Article  CAS  Google Scholar 

  14. Petrov, I., Shenderova, O., Grishko, V., et al., Diamond Relat. Mater., 2007, vol. 16, p. 2098.

    Article  CAS  Google Scholar 

  15. Gibson, N., Shenderova, O., Luo, T.J.M., et al., Diamond Relat. Mater., 2009, vol. 18, p. 620.

    Article  CAS  Google Scholar 

  16. Vul’, A.Ya., Eydelman, E.D., Inakuma, M., and Osawa, E., Diamond Relat. Mater., 2007, vol. 16, p. 2023.

    Article  Google Scholar 

  17. Davis, J.A., James, R.O., and Leckie, O.J., J. Colloid Interface Sci., 1978, vol. 63, p. 480.

    Article  CAS  Google Scholar 

  18. James R.O., Parks G.A. Characterization of aqueous colloids by their electrical double layer and intrinsic surface chemical properties // In: Surface and Colloid Science, Ed. Matijevic E. New York-London: Plenum Press, 1982. V. 12. P. 119.

    Google Scholar 

  19. Kosmulski, M., Chemical Properties of Material Surfaces, New York: Marcel Dekker, 2001, p. 65.

    Google Scholar 

  20. Kuchuk, V.I., Golikova, E.V., and Chernoberezhskii, Yu.M., Kolloidn. Zh., 1984, vol. 46, p. 1129.

    CAS  Google Scholar 

  21. Chiganova, G.A., Kolloidn. Zh., 1994, vol. 56, p. 266.

    CAS  Google Scholar 

  22. Boehm, H.P., Adv. Catal. Relat. Subj., 1966, vol. 16, p. 179.

    Article  CAS  Google Scholar 

  23. RF Patent 2322389, 2008.

  24. Turner, B.F. and Fein, J.B., Comput. Geosci., 2006, vol. 32, p. 1344.

    Article  CAS  Google Scholar 

  25. Osipov, V.Yu., Shames, A.I., and Vul’, A.Ya, Physica B (Amsterdam), 2009, vol. 404, p. 4522.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Zhukov, F.R. Gareeva, A.E. Aleksenskii, A.Ya. Vul’, 2010, published in Kolloidnyi Zhurnal, 2010, Vol. 72, No. 5, pp. 635–642.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhukov, A.N., Gareeva, F.R., Aleksenskii, A.E. et al. Surface charge of detonation nanodiamond particles in aqueous solutions of simple 1 : 1 Electrolytes. Colloid J 72, 640–646 (2010). https://doi.org/10.1134/S1061933X10050091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X10050091

Keywords

Navigation