Skip to main content
Log in

Mechanochemistry of hexagonal boron nitride: 1. Destruction and amorphization during mechanical treatment

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The regularities of the mechanical activation of hexagonal boron nitride are analyzed using the X-ray diffraction, IR spectroscopy, transmission electron microscopy, dynamic light scattering, and adsorption methods. At the initial state of mechanical activation, the main process is material destruction. At this stage, the specific surface area increases to 400 m2/g and crystallographically oriented nanosized needles are formed. At the same time, boron nitride crystal structure is disordered with an increase in interplanar distance d(002). The disordering is assumed to be due to a shift along planes (001). At a specific dose of supplied mechanical energy above 6–8 kJ/g, the disordering processes dominate and the material is amorphized. At this stage, the specific surface area of samples decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomas, J., Weston, N.E., and O’Connor, T.E., J. Am. Chem. Soc., 1963, vol. 84, p. 4619.

    Article  Google Scholar 

  2. Postole, G., Caldararu, M., Ionescu, N.I., et al., Thermochim. Acta, 2005, vol. 434, p. 150.

    Article  CAS  Google Scholar 

  3. Ma, R., Bando, Y., Sato, T., and Kurashina, K., Chem. Mater., 2001, vol. 13, p. 2965.

    Article  CAS  Google Scholar 

  4. Chen, X., Gao, X.P., Zhang, H., et al., J. Phys. Chem., 2005, vol. 109, p. 11525.

    CAS  Google Scholar 

  5. Huang, J.Y., Yasuda, H., and Mori, H., J. Am. Ceram. Soc., 2000, vol. 83, p. 403.

    Article  CAS  Google Scholar 

  6. Lim, S.H., Luo, J., Ji, W., and Lin, J., Catal. Today, 2007, vol. 120, p. 346.

    Article  CAS  Google Scholar 

  7. Ji, F., Cao, C., Xu, H., and Yang, Z., Chin. J. Chem. Eng., 2006, vol. 14, p. 389.

    Article  CAS  Google Scholar 

  8. Xia, Z.P., Li, Z.Q., Li, C.J., et al., J. Alloys Compd., 2005, vol. 399, p. 139.

    Article  CAS  Google Scholar 

  9. Streletskii, A.N., Permenov, D.G., Povstugar, I.V., et al., Khim. Interesah Ustoich. Razvit., 2007, vol. 15, p. 175.

    Google Scholar 

  10. Povstugar, I.V., Streletskii, A.N., Permenov, D.G., et al., J. Alloys Compd., 2009, vol. 483, p. 298.

    Article  CAS  Google Scholar 

  11. Ding, Z.H., Yao, B., Qiu, L.X., et al., J. Alloys Compd., 2005, vol. 391, p. 77.

    Article  CAS  Google Scholar 

  12. Borchers, Ch., Morozova, O.S., Khomenko, T.I., et al., Chem. Phys. Lett., 2008, vol. 465, p. 82.

    Article  CAS  Google Scholar 

  13. Bokhonov, B., Korchagin, M., and Borisova, Yu., J. Alloys Compd., 2004, vol. 372, p. 141.

    Article  CAS  Google Scholar 

  14. Tao, J.G., Yao, B., Yang, J.H., et al., J. Alloys Compd., 2004, vol. 384, p. 268.

    Article  CAS  Google Scholar 

  15. Streletskii, A.N, Kolbanev, I.V., Borunova, A.B., and Butyagin, P.Yu., in Modern Mechanochemistry, Research Signpost (in press).

  16. Xia, Z.P. and Li, Z.Q., J. Alloys Compd., 2006, vol. 436, p. 170.

    Article  Google Scholar 

  17. Taniguchi, T., Kimoto, K., Tansho, M., et al., Chem. Mater., 2003, vol. 15, p. 2744.

    Article  CAS  Google Scholar 

  18. Du, X.J., Guo, F.Q., and Lu, K., Nanostruct. Mater., 1996, vol. 5, p. 579.

    Article  Google Scholar 

  19. Streletskii, A.N., Permenov, D.G., Bokhonov, B.B., et al., J. Alloys Compd., 2009, vol. 483, p. 313.

    Article  CAS  Google Scholar 

  20. Butyagin, P.Yu. and Pavlichev, I.K., React. Solids, 1986, vol. 1, p. 361.

    Article  CAS  Google Scholar 

  21. Streletskii, A.N., Abstracts of Papers, 2 Int. Conf. on Structural Applications of Mechanical Alloying, Vancouver, 1993, p. 51.

  22. Shelekhov, E.V., Abstracts of Papers, Nats. konf. po primeneniyu rentgenovskogo i sinkhrotronnogo izluchenii, neitronov i elektronov dlya issledovaniya materialov (Natl. Conf. on Application of X-Ray and Synchrotron Radiation, Neutrons and Electrons for Materials Research), Dubna, 1997, vol. 3, p. 316.

    Google Scholar 

  23. Berne, B.J. and Pecora, R., Dynamic Light Scattering, New York: Wiley, 1976.

    Google Scholar 

  24. Streletskii, A.N., Permenov, D.G., Bokhonov, B.B., et al., Kolloidn. Zh. (in press).

  25. Ziyatdinov, A.V., Ross. Khim. Zh., 2004, vol. 48, no. 5, p. 5.

    Google Scholar 

  26. Iwashita, N., Park, C., Fujimoto, H., et al., Carbon, 2004, vol. 42, p. 701.

    Article  CAS  Google Scholar 

  27. Nemanich, R.J., Solin, S.A., and Martin, R.M., Phys. Rev. B: Condens. Matter, 1981, vol. 23, p. 6348.

    CAS  Google Scholar 

  28. Rozenberg, A.S., Sinenko, Yu.A., and Chukanov, N.V., J. Mater. Sci., 1993, vol. 28, p. 567.

    Google Scholar 

  29. Zero, K.M. and Recora, R., Macromolecules, 1982, vol. 15, p. 87.

    Article  CAS  Google Scholar 

  30. Flamberg, A. and Pecora, R., J. Phys. Chem., 1984, vol. 88, p. 3026.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Streletskii.

Additional information

Original Russian Text © A.N. Streletskii, D.G. Permenov, K.A. Streletzky, B.B. Bokhonov, A.V. Leonov, 2010, published in Kolloidnyi Zhurnal, 2010, Vol. 72, No. 4, pp. 532–541.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streletskii, A.N., Permenov, D.G., Streletzky, K.A. et al. Mechanochemistry of hexagonal boron nitride: 1. Destruction and amorphization during mechanical treatment. Colloid J 72, 544–552 (2010). https://doi.org/10.1134/S1061933X10040162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X10040162

Keywords

Navigation