Skip to main content
Log in

Neutron Diffraction and Spectrometry at the RADEX Pulsed Neutron Source of the Institute for Nuclear Research, Russian Academy of Sciences

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The RADEX pulsed neutron source based on a linear proton accelerator at the Institute for Nuclear Research, the Russian Academy of Sciences, has one vertical channel with a 4-m path length and three horizontal channels with path lengths of approximately 10, 20, 30, and 50 m. The source is characterized by an unconventional configuration: the target and the water moderator are located perpendicularly to the proton beam; as a result, the neutron spectrum is enriched with epithermal and cascade neutrons. Using the source, investigations in the fields of nuclear physics, condensed-matter physics and nanostructures can be performed. The results obtained using various path lengths of horizontal channels of the RADEX neutron source are presented. Test measurements are conducted and direct beam spectra for the horizontal neutron channels and neutron diffraction patterns of test samples are obtained. The resolution for different path lengths of the neutron source is determined. The possibility of performing phase analysis is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. R. Sosnick, W. M. Snow, and P. E. Sokol, Phys. Rev. B 41, 11185 (1990). https://doi.org/10.1103/PhysRevB.41.11185

    Article  Google Scholar 

  2. P. L. Anthony, R. G. Arnold, H. R. Band, et al., Phys. Rev. D 54, 6620 (1996). https://doi.org/10.1103/PhysRevD.54.6620

    Article  Google Scholar 

  3. G. Gorini, G. Festa, and C. Andreani, J. Phys.: Conf. Ser. 571, 012005 (2014). https://doi.org/10.1088/1742-6596/571/1/012005

    Google Scholar 

  4. K. Kuwahara, S. Sugiyama, K. Iwasa, et al., Appl. Phys. A: Mater. Sci. Process. 74 (1 Supple), s303 (2002). https://doi.org/10.1007/s003390201399

    Article  Google Scholar 

  5. Y. Ishikawa, N. Watanabe, K. Tajima, and H. Sekine, Phys. Lett. A 48, 159 (1974). https://doi.org/10.1016/0375-9601(74)90522-2

    Article  Google Scholar 

  6. A. A. Alekseev, R. A. Sadykov, V. S. Litvin, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (2), 215 (2015). https://doi.org/10.1134/S1027451014060202

    Article  Google Scholar 

  7. Yu. V. Ryabov, M. I. Grachev, D. V. Kamanin, et al., Phys. Solid State 52 (5), 1021 (2010).

    Article  Google Scholar 

  8. A. A. Alekseev, A. A. Bergman, A. I. Berlev, et al., Preprint No. 1325/2012, IYaI RAN (Institute for Nuclear Research Russ. Acad. Sci., Moscow, 2012).

  9. E. S. Konobeevski, S. V. Zuyev, M. V. Mordovskoy, et al., Phys. At. Nucl. 76 (11), 1398 (2013). https://doi.org/10.1134/S1063778813110100

    Article  Google Scholar 

  10. S. P. Kuznetsov, I. V. Meshkov, R. A. Sadykov, et al., Bull. Lebedev Phys. Inst. 40 (9), 245 (2013).

    Article  Google Scholar 

  11. V. N. Marin, R. A. Sadykov, D. N. Trunov, et al., Instrum. Exp. Tech. 61 (1), 1 (2018). https://doi.org/10.1134/S0020441218010074

    Article  Google Scholar 

  12. V. N. Marin, S. I. Potashev, D. N. Trunov, et al., Instrum. Exp. Tech. 57 (6), 684 (2014).

  13. J. Rodriguez-Carvajal, Comm. Powder Diffr. Newsl. IUCr 26, 12 (2001). doi 10.1134/S0020441214050169

  14. V. A. Petrov, V. F. Sukhovarov, and R. D. Stokratov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 8, 110 (1983).

  15. V. A. Petrov, V. F. Sukhovarov, and R. D. Stokratov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 24 (1984).

  16. V. A. Petrov, V. F. Sukhovarov, and R. D. Stokratov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9, 104 (1984).

  17. V. A. Petrov, L. I. Vershinina, V. F. Sukhovarov, and R. D. Stokratov, Fiz. Met. Metalloved. 57 (1), 127 (1984).

    Google Scholar 

  18. V. A. Petrov, V. F. Sukhovarov, and R. D. Stokratov, Fiz. Met. Metalloved. 56 (1), 72 (1983).

    Google Scholar 

  19. S. P. Kuznetsov, V. S. Litvin, V. N. Marin, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12 (3), 419 (2018). https://doi.org/10.1134/S1027451018030102

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was carried out using equipment common use center of the Accelerator Center for Neutron Studies of Matter Structure and Nuclear Medicine, Institute for Nuclear Research, Russian Academy of Sciences(unique identifier of the works RFMEFI62117X0014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Litvin.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvin, V.S., Alekseev, A.A., Trunov, D.N. et al. Neutron Diffraction and Spectrometry at the RADEX Pulsed Neutron Source of the Institute for Nuclear Research, Russian Academy of Sciences. J. Surf. Investig. 13, 188–194 (2019). https://doi.org/10.1134/S1027451019020137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019020137

Keywords:

Navigation