Skip to main content
Log in

Graphene Quantum Dots Modified Graphite Screen Printed Electrode for the Electrochemical Detection of Acetylcholine

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, the application of graphene quantum dots (GQD) modified screen printed electrode (SPE) (GQD/SPE) in the electrochemical detection of acetylcholine is presented. The modification of the SPE with graphene quantum dots resulted in increased oxidation current of acetylcholine oxidation when compared to that obtained from bare SPE. The linear concentration range was between 1.0 and 800.0 μM and limit of detection was calculated to be 0.3 μM. The GQD/SPE sensor was used for the quantitative analysis of acetylcholine in acetylcholine injection and urine samples. The sufficiently good recoveries and low standard deviations reflect the high accuracy of developed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Tamiya, E., Sugiura, Y., Navera, E.N., Mizoshita, S., Nakajima, K., Akiyama, A., and Karube, I., Ultramicro acetylcholine sensor based on an enzyme-modified carbon fibre electrode, Anal. Chim. Acta, 1991, vol. 251, p. 129.

    Article  CAS  Google Scholar 

  2. Vinodhkumar, G., Ramya, R., Vimalan, M., Potheher, I., and Cyrac Peter, A., Reduced graphene oxide based on simultaneous detection of neurotransmitters, Prog. Chem. Biochem. Res., 2018, vol. 1, p. 40.

    Article  Google Scholar 

  3. Çevik, S., Timur, S., and Anik, Ü., Biocentri-voltammetric biosensor for acetylcholine and choline, Microchim. Acta, 2012, vol. 179, p. 299.

    Article  CAS  Google Scholar 

  4. Hou, S., Ou, Z., Chen, Q., and Wu, B., Amperometric acetylcholine biosensor based on self-assembly of gold nanoparticles and acetylcholinesterase on the sol-gel/multi-walled carbon nanotubes/choline oxidase composite-modified platinum electrode, Biosens. Bioelectron., 2012, vol. 33, p. 44.

    Article  CAS  PubMed  Google Scholar 

  5. Sen, S., Gulce, A., and Gulce, H., Polyvinylferrocenium modified Pt electrode for the design of amperometric choline and acetylcholine enzyme electrodes, Biosens. Bioelectron., 2004, vol. 19, p. 1261.

    Article  CAS  PubMed  Google Scholar 

  6. Kuribayashi, M., Tsuzuki, M., Sato, K., Abo, M., and Yoshimura, E., A rapid analytical method for free choline by LC and its application for bacterial culture medium samples, Chromatographia, 2008, vol. 67, p. 339.

    Article  CAS  Google Scholar 

  7. Qian, J., Yang, X., Jiang, L., Zhu, C., Mao, H., and Wang, K., Facile preparation of Fe3O4 nanospheres/reduced graphene oxide nanocomposites with high peroxidase-like activity for sensitive and selective colorimetric detection of acetylcholine, Sens. Actuators B: Chem., 2014, vol. 201, p. 160.

    Article  CAS  Google Scholar 

  8. Wang, C.I., Periasamy, A.P., and Chang, H.T., Photoluminescent C-dots@RGO probe for sensitive and selective detection of acetylcholine, Anal. Chem., 2013, vol. 85, p. 3263.

    Article  CAS  PubMed  Google Scholar 

  9. Buiculescu, R., Hatzimarinaki, M., and Chaniotakis, N.A., Biosilicated CdSe/ZnS quantum dots as photoluminescent transducers for acetylcholinesterase-based biosensors, Anal. Bioanal. Chem., 2010, vol. 398, p. 3015.

    Article  CAS  PubMed  Google Scholar 

  10. Burmeister, J.J., Pomerleau, F., Huettl, P., Gash, C.R., Werner, C.E., Bruno, J.P., and Gerhardt, G.A., Ceramic-based multisite microelectrode arrays for simultaneous measures of choline and acetylcholine in CNS, Biosens. Bioelectron., 2008, vol. 23, p. 1382.

    Article  CAS  PubMed  Google Scholar 

  11. Zayats, M., Kharitonov, A.B., Pogorelova, S.P., Lioubashevski, O., Katz, E., and Willner, I., Probing photoelectrochemical processes in Au–Cds nanoparticle arrays by surface plasmon resonance: application for the detection of acetylcholine esterase inhibitors, J. Am. Chem. Soc., 2003, vol. 125, p. 16006.

    Article  CAS  PubMed  Google Scholar 

  12. Sattarahmady, N., Heli, H., and Moosavi-Movahedi, A.A., An electrochemical acetylcholine biosensor based on nanoshells of hollow nickel microspheres–carbon microparticles–Nafion nanocomposite, Biosens. Bioelectron., 2010, vol. 25, p. 2329.

    Article  CAS  PubMed  Google Scholar 

  13. Laschi, S., Ogończyk, D., Palchetti, I., and Mascini, M., Evaluation of pesticide-induced acetylcholinesterase inhibition by means of disposable carbon-modified electrochemical biosensors, Enzyme Microb. Technol., 2007, vol. 40, p. 485.

    Article  CAS  Google Scholar 

  14. Zhu, W., An, Y., Zheng, J., Tang, L., Zhang, W., Jin, L., and Jiang, L., A new microdialysis-electrochemical device for in vivo simultaneous determination of acetylcholine and choline in rat brain treated with N-methyl-(R)-salsolinol, Biosens. Bioelectron., 2009, vol. 24, p. 3594.

    Article  CAS  PubMed  Google Scholar 

  15. Karimi-Maleh, H., Orooji, Y., Karimi, F., Alizadeh, M., Baghayeri, M., Rouhi, J., and Al-Othman, A., A critical review on the use of potentiometric based biosensors for biomarkers detection, Biosens. Bioelectron., 2021, vol. 184, p. 113252.

    Article  CAS  PubMed  Google Scholar 

  16. Saghiri, S., Ebrahimi, M., and Bozorgmehr, M.R., NiO nanoparticle/1-hexyl-3-methylimidazolium hexafluorophosphate composite for amplification of epinephrine electrochemical sensor, Asian J. Nanosci. Mater., 2021, vol. 4, p. 46.

    CAS  Google Scholar 

  17. Yilmaz, U.T., Kum, G.O., Akman, S.A., and Yilmaz, H., Rapid and sensitive determination of Hg(II) using polarographic technique and application to chlorophytum comosum, Russ. J. Electrochem., 2018, vol. 54, p. 20.

    Article  CAS  Google Scholar 

  18. Karimi-Maleh, H. and Arotiba, O.A., Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid, J. Colloid Interface Sci., 2020, vol. 560, p. 208.

    Article  CAS  PubMed  Google Scholar 

  19. Shamsi, A. and Ahour, F., Electrochemical sensing of thioridazine in human serum samples using modified glassy carbon electrode, Adv. J. Chem. Sect. A, 2020, vol. 4, p. 22.

    Google Scholar 

  20. Mehri-Talarposhti, F., Ghorbani-Hasan Saraei, A., Golestan, L., and Shahidi, S.A., Electrochemical determination of Vitamin B6 in fruit juices using a new nanostructure voltammetric sensor, Asian J. Nanosci. Mater., 2020, vol. 3, p. 313.

    CAS  Google Scholar 

  21. Karimi-Maleh, H. and Arotiba, O.A., Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid, J. Colloid Interface Sci., 2020, vol. 560, p. 208.

    Article  CAS  PubMed  Google Scholar 

  22. Deng, Y., Wang, W., Ma, C., and Li, Z., Fabrication of an electrochemical biosensor array for simultaneous detection of L-glutamate and acetylcholine, J. Biomed. Nanotechnol., 2013, vol. 9, p. 1378.

    Article  CAS  PubMed  Google Scholar 

  23. Nejad, F.G., Tajik, S., Beitollahi, H., and Sheikhshoaie, I., Magnetic nanomaterials based electrochemical (bio) sensors for food analysis, Talanta, 2021, vol. 228, p. 122075.

    Article  CAS  Google Scholar 

  24. Shankaran, D.R. and Narayanan, S.S., Cobalt hexacyanoferrate-modified electrode for amperometric assay of hydrazine, Russ. J. Electrochem., 2002, vol. 38, p. 987.

    Article  Google Scholar 

  25. Elobeid, W.H. and Elbashir, A.A., Development of chemically modified pencil graphite electrode based on benzo-18-crown-6 and multi-walled CNTs for determination of lead in water samples, Prog. Chem. Biochem. Res., 2019, vol. 2, p. 24.

    Article  CAS  Google Scholar 

  26. Karimi-Maleh, H., Karimi, F., Orooji, Y., Mansouri, G., Razmjou, A., Aygun, A., and Sen, F., A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin, Sci. Rep., 2020, vol. 10, p. 1.

    Article  CAS  Google Scholar 

  27. Santana, E.R., de Lima, C.A., Piovesan, J.V., and Spinelli, A., An original ferroferric oxide and gold nanoparticles-modified glassy carbon electrode for the determination of bisphenol A, Sens. Actuators B: Chem., 2017, vol. 240, p. 487.

    Article  CAS  Google Scholar 

  28. Abdi, R., Ghorbani-HasanSaraei, A., Naghizadeh Raeisi, S., and Karimi, F., A gallic acid food electrochemical sensor based on amplification of paste electrode by Cdo/CNTs nanocomposite and ionic liquid, J. Med. Chem. Sci., 2020, vol. 3, p. 338.

    CAS  Google Scholar 

  29. Tajik, S., Beitollahi, H., Jang, H.W., and Shokouhimehr, M., A screen printed electrode modified with Fe3O4@polypyrrole-Pt core–shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine, Talanta, 2021, vol. 232, p. 122379.

    Article  CAS  PubMed  Google Scholar 

  30. Wang, Y., Huang, B., Dai, W., Ye, J., and Xu, B., Sensitive determination of capsaicin on Ag/Ag2O nanoparticles/reduced graphene oxide modified screen-printed electrode, J. Electroanal. Chem., 2016, vol. 776, p. 93.

    Article  CAS  Google Scholar 

  31. Zhang, J.G., Tian-Fang, K.A.N.G., Rui, X.U.E., and Xue, S.U.N., An immunosensor for microcystins based on Fe3O4@Au magnetic nanoparticle modified screen-printed electrode, Chin. J. Anal. Chem., 2013, vol. 41, p. 1353.

    Article  CAS  Google Scholar 

  32. Motahharinia, M., Zamani, H.A., and Karimi-Maleh, H., Electrochemical determination of doxorubicin in injection samples using paste electrode amplified with reduced graphene oxide/Fe3O4 nanocomposite and 1‑hexyl-3-methylimidazolium hexafluorophosphate, Chem. Methodol., 2021, vol. 5, p. 107.

    CAS  Google Scholar 

  33. Nicholas, P., Pittson, R., and Hart, J.P., Development of a simple, low cost chronoamperometric assay for fructose based on a commercial graphite-nanoparticle modified screen-printed carbon electrode, Food Chem., 2018, vol. 241, p. 122.

    Article  CAS  PubMed  Google Scholar 

  34. Tajik, S., Beitollahi, H., Nejad, F.G., Sheikhshoaie, I., Nugraha, A.S., Jang, H.W., and Shokouhimehr, M., Performance of metal-organic frameworks in the electrochemical sensing of environmental pollutants, J. Mater. Chem. A, 2021, vol. 9, p. 8195.

    Article  CAS  Google Scholar 

  35. Zhu, Y., Pan, D., Hu, X., Han, H., Lin, M., and Wang, C., An electrochemical sensor based on reduced graphene oxide/gold nanoparticles modified electrode for determination of iron in coastal waters, Sens. Actuators B: Chem., 2017, vol. 243, p. 1.

    Article  CAS  Google Scholar 

  36. Mohammadi, S., Taheri, A., and Rezayati-Zad, Z., Ultrasensitive and selective non-enzymatic glucose detection based on pt electrode modified by carbon nanotubes graphene oxide/nickel hydroxide-Nafion hybrid composite in alkaline media, Prog. Chem. Biochem. Res., 2018, vol. 1, p. 1.

    Article  Google Scholar 

  37. Khodadadi, A., Faghih-Mirzaei, E., Karimi-Maleh, H., Abbaspourrad, A., Agarwal, S., and Gupta, V.K., A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations, Sens. Actuators B: Chem., 2019, vol. 284, p. 568.

    Article  CAS  Google Scholar 

  38. Nia, B., Anaraki Firooz, A., Ghalkhani, M., and Beheshtian, J., Experimental study of the effect of undoped ZnO, Fe and Mn doped ZnO nanostructures and the electrochemical response of the nanostructured modified carbon paste electrode toward Levodopa, Quar, J. Iran. Chem. Commun., 2016, vol. 4, p. 483.

    Google Scholar 

  39. Ma, X. and Chen, M., Electrochemical sensor based on graphene doped gold nanoparticles modified electrode for detection of diethylstilbestrol, Sens. Actuators B: Chem., 2015, vol. 215, p. 445.

    Article  CAS  Google Scholar 

  40. Tajik, S., Dourandish, Z., Zhang, K., Beitollahi, H., Van Le, Q., Jang, H.W., and Shokouhimehr, M., Carbon and graphene quantum dots: a review on syntheses, characterization, biological and sensing applications for neurotransmitter determination, RSC Adv., 2020, vol. 10, p. 15406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Luo, X., Morrin, A., Killard, A.J., and Smyth, M.R., Application of nanoparticles in electrochemical sensors and biosensors, Electroanalysis, 2006, vol. 18, p. 319.

    Article  CAS  Google Scholar 

  42. Wang, J., Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis, 2005, vol. 17, p. 7.

    Article  CAS  Google Scholar 

  43. Wang, Y., Li, Y., Tang, L., Lu, J., and Li, J., Application of graphene-modified electrode for selective detection of dopamine, Electrochem. Commun., 2009, vol. 11, p. 889.

    Article  CAS  Google Scholar 

  44. Zhao, J., Chen, G., Zhu, L., and Li, G., Graphene quantum dots-based platform for the fabrication of electrochemical biosensors, Electrochem. Commun., 2011, vol. 13, p. 31.

    Article  CAS  Google Scholar 

  45. Sun, H., Wu, L., Wei, W., and Qu, X., Recent advances in graphene quantum dots for sensing, Mater. Today, 2013, vol. 16, p. 433.

    Article  CAS  Google Scholar 

  46. Beitollahi, H., Dourandish, Z., Ganjali, M.R., and Shakeri, S., Voltammetric determination of dopamine in the presence of tyrosine using graphite screen-printed electrode modified with graphene quantum dots, Ionics, 2018, vol. 24, p. 4023.

    Article  CAS  Google Scholar 

  47. Bard, A.J. and Faulkner, L.R., Electrochemical Methods Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.

    Google Scholar 

  48. Wang, L., Chen, X., Liu, C., and Yang, W., Non-enzymatic acetylcholine electrochemical biosensor based on flower-like NiAl layered double hydroxides decorated with carbon dots, Sens. Actuators B: Chem., 2016, vol. 233, p. 199.

    Article  CAS  Google Scholar 

  49. Beitollahi, H., Safaei, M., and Tajik, S., Screen-printed electrode modified with ZnFe2O4 nanoparticles for detection of acetylcholine, Electroanalysis, 2019, vol. 31, p. 1135.

    Article  CAS  Google Scholar 

  50. He, C., Wang, Z., Wang, Y., Hu, R., and Li, G., Nonenzymatic all-solid-state coated wire electrode for acetylcholine determination in vitro, Biosens. Bioelectron., 2016, vol. 85, p. 679.

    Article  CAS  PubMed  Google Scholar 

  51. Heli, H., Hajjizadeh, M., Jabbari, A., and Moosavi-Movahedi, A.A., Fine steps of electrocatalytic oxidation and sensitive detection of some amino acids on copper nanoparticles, Biosens. Bioelectron., 2009, vol. 24, p. 2328.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iran Sheikhshoaie or Hadi Beitollahi.

Ethics declarations

The author confirms that this article content has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahra Dourandish, Sheikhshoaie, I. & Beitollahi, H. Graphene Quantum Dots Modified Graphite Screen Printed Electrode for the Electrochemical Detection of Acetylcholine. Russ J Electrochem 58, 716–724 (2022). https://doi.org/10.1134/S1023193522080031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522080031

Keywords:

Navigation