Skip to main content
Log in

TiO2/Fe3O4/Multiwalled Carbon Nanotubes Nanocomposite as Sensing Platform for Simultaneous Determination of Morphine and Diclofenac at a Carbon Paste Electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A nanocomposite of TiO2/Fe3O4/MWCNTs (TFMWCNT) and ionic liquid was used to fabrication of a novel modified carbon paste electrode. The modified electrode was used for voltammetric determination of morphine. The proposed method exhibited wide linear dynamic range of 2.5 × 10–8 to 6.0 × 10–4 M with a detection limit (S/N = 3) of 1.5 × 10–8 M for morphine. Also, the diffusion coefficient (D = 2.83 × 10–6 cm2/s) and electron transfer coefficient (α = 0.31) for morphine oxidation were also determined. The novel sensor was used for simultaneous determination of morphine and diclofenac using square wave voltammetry (SWV). Finally this method was used for determination of morphine and diclofenac in some real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torres Lopez, J.E., Carmona Diaz, E., Cortes Penaloza, J.L., Guzman Priego, C.G., and Rocha Gonzalez, H.I., Antinociceptive synergy between diclofenac and morphine after local injection into the inflamed site, Pharmacol. Rep., 2013, vol. 65, p. 358.

    CAS  Google Scholar 

  2. Li, Y., Zou, L., Li, Y., Li, K., and Ye, B., A new voltammetric sensor for morphine detection based on electrochemically reduced MWNTs-doped graphene oxide composite film, Sens. Actuators B, 2014, vol. 201 p. 511.

    Article  CAS  Google Scholar 

  3. Wada, M., Yokota, C., Ogata, Y., Kuroda, N., Yamada, H., and Nakashima, K., Sensitive HPLC—fluorescence detection of morphine labeled with DIB–Cl in rat brain and blood microdialysates and its application to the preliminarily study of the pharmacokinetic interaction between morphine and diclofenac, Anal. Bioanal. Chem., 2008, vol. 391, p. 1057.

    Article  CAS  PubMed  Google Scholar 

  4. Mokhtari, A., Karimi-Maleh, H., Ensafi, A.A., and Beitollahi, H., Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples, Sens. Actuators B, 2012, vol. 169, p. 96.

    Article  CAS  Google Scholar 

  5. Jafari-Nodoushan, M., Barzin, J., and Mobedi, H., A stability-indicating HPLC method for simultaneous determination of morphine and naltrexone, J. Chromatogr. B, 2016, vol. 1011, p. 163.

    Article  CAS  Google Scholar 

  6. Pourtaghavi Talemi, R. and Mashhadizadeh, M.H., A novel morphine electrochemical biosensor based on intercalative and electrostatic interaction of morphine with double strand DNA immobilized onto a modified Au electrode, Talanta, 2015, vol. 131, p. 460.

    Article  CAS  PubMed  Google Scholar 

  7. Ferreira Gomes, J., Adaes, S., Mendonça, M., and Castro Lopes, J.M., Analgesic effects of lidocaine, morphine and diclofenac on movement-induced nociception, as assessed by the Knee-Bend and CatWalk tests in a rat model of osteoarthritis, Pharm. Biochem. Behav., 2012, vol. 101, p. 617.

    CAS  Google Scholar 

  8. Gimenes, D.T., Cunha, R.R., Carvalho Ribeiro, M.M., Pereira, P.F., Abarza Munoz, R.A., and Richter, E.M., Two new electrochemical methods for fast and simultaneous determination of codeine and diclofenac, Talanta, 2013, vol. 116, p. 1026.

    CAS  Google Scholar 

  9. Gostick, N., James, I.G., Khong, T.K., Roy, P., Shepherd, P.R., and Miller, A.J., Controlled-release indomethacin and sustained-release diclofenac sodium in the treatment of osteoarthritis: A comparative controlled clinical trial in general practice, Curr. Med. Res. Opin., 1990, vol. 12, p. 135.

    Article  CAS  PubMed  Google Scholar 

  10. Ammon, S., Marx, C., Behrens, C., Hofmann, U., Murdter, T., Griese, E.U., and Mikus, G., Diclofenac does not interact with codeine metabolism in vivo: a study in healthy volunteers, BMC Clin. Pharm., 2002, vol. 2, p. 101.

    Article  Google Scholar 

  11. Taei, M., Hasanpour, F., Hajhashemi, V., Movahedi, M., and Baghlani, H., Simultaneous detection of morphine and codeine in urine samples of heroin addicts using multi-walled carbon nanotubes modified SnO2–Zn2SnO4 nanocomposites paste electrode, Appl. Surf. Sci., 2016, vol. 363, p. 490.

    Article  CAS  Google Scholar 

  12. Aoki, K., Shilama, Y., Kokado, A., Yoshida, T., and Kuroiwa, Y., Enzyme-linked immunosorbent assay and latex agglutination inhibition reaction test for morphine in urine, Forensic. Sci. Int., 1996, vol. 81, p. 125.

    Article  CAS  PubMed  Google Scholar 

  13. Isbell, T.A., Strickland, E.C., Hitchcock, J., McIntire, G., and Colyer, C.L., Capillary electrophoresis-mass spectrometry determination of morphine and its isobaric glucuronide metabolites, J. Chromatogr. B, 2015, vol. 980, p. 65.

    Article  CAS  Google Scholar 

  14. Jain, R., Utility of thin layer chromatography for detection of opioids and benzodiazepines in a clinical setting, Addict. Behav., 2000, vol. 25, p. 451.

    Article  CAS  PubMed  Google Scholar 

  15. Ganjali, M.R., Larijani, B., and Pourbasheer, S., Fabrication of an all solid state (ASS) polymeric membrane sensor (PME) for tramadol and its application, Int. J. Electrochem. Sci., 2016, vol. 11, p. 2119.

    CAS  Google Scholar 

  16. Beitollahi, H. and Garkani Nejad, F., Graphene oxide/ZnO nano composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode, Electroanalysis, 2016, vol. 28, p. 2237.

    Article  CAS  Google Scholar 

  17. Bulut, I., Simultaneous square-wave voltammetric determination of acetazolamide and theophylline in pharmaceutical formulations, Russ. J. Electrochem., 2016, vol. 52, p. 427.

    Article  CAS  Google Scholar 

  18. Yuan, Y., Bao, Z.H., Li, S.M., and Zhao, K., Electrochemical evaluation of antioxidant capacity in pharmaceutical antioxidant excipient of drugs on guaninebased modified electrode, J. Electroanal. Chem., 2016, vol. 772, p. 58.

    Article  CAS  Google Scholar 

  19. Jahani, Sh. and Beitollahi, H., Selective detection of dopamine in the presence of uric acid using NiO nanoparticles decorated on graphene nanosheets modified screen-printed electrodes, Electroanalysis, 2016, vol. 28, p. 2022.

    Article  CAS  Google Scholar 

  20. Shikandar, D. Bukkitgar, N., and Shetti, P., Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste electrode, Mater. Sci. Eng. C, 2016, vol. 65, p. 262.

    Article  CAS  Google Scholar 

  21. Tarinc, D. and Golcu, A., Electrochemical behavior of valacyclovir and its square wave and differential pulse voltammetric determination in pharmaceuticals and biological fluids, Russ. J. Electrochem., 2015, vol. 51, p. 149.

    Article  CAS  Google Scholar 

  22. Alizadeh, T., Ganjali, M.R., Akhoundian, M., and Norouzi, P., Voltammetric determination of ultratrace levels of cerium(III) using a carbon paste electrode modified with nano-sized cerium-imprinted polymer and multiwalled carbon nanotubes, Microchim. Acta, 2016, vol. 183, p. 1123.

    Article  CAS  Google Scholar 

  23. Mahmoudi Moghaddam, H., Beitollahi, H., Tajik, S., and Soltani, H., Fabrication of a nanostructure based electrochemical sensor for voltammetric determination of epinephrine, uric acid and folic acid, Electroanalysis, 2015, vol. 27, p. 2620.

    CAS  Google Scholar 

  24. Chandrashekar, B.N., Kumara Swamy, B.E., Ashoka, N.B., and Pandurangachar, M., Simultaneous electrochemical determination of epinephrine and uric acid at 1-butyl-4-methyl-pyridinium tetrafluroborate ionic liquid modified carbon paste electrode: a voltammetric study, J. Mol. Liq., 2012, vol. 165, p. 168.

    CAS  Google Scholar 

  25. Ganjali, M.R., Khoshsafar, H., Shirzadmehi, A., Javanbakht, M., and Faridbod, F., Improvement of carbon paste ion selective electrode response by using room temperature ionic liquids (RTILs) and multiwalled carbon nanotubes (MWCNTs), Int. J. Electrochem. Sci., 2009, vol. 4, p. 435.

    CAS  Google Scholar 

  26. Beitollahi, H., Karimi-Maleh, H., and Khabazzadeh, H., Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N'-phenylhydrazinecarbothioamide, Anal. Chem., 2008, vol. 80, p. 9848.

    Article  CAS  PubMed  Google Scholar 

  27. Varchenko, V.V., Belikov, K.N., and Drapailo, A.B., Effect of the p-tert-butylcalix[6]arene modifier on the electrochemical properties of the modified carbon paste electrode, Russ. J. Electrochem., 2015, vol. 51, p. 857.

    Article  CAS  Google Scholar 

  28. Li, Y., Zhai, X., Liu, X., Wang, L., Liu, H., and Wang, H., Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode, Talanta, 2016, vol. 148, p. 362.

    Article  CAS  PubMed  Google Scholar 

  29. Alizadeh, T., Ganjali, M.R., Norouzi, P., Zare, M., and Zeraatkar, A., A novel high selective and sensitive para-nitrophenol voltammetric sensor, based on a molecularly imprinted polymer–carbon paste electrode, Talanta, 2009, vol. 79, p. 1197.

    Article  CAS  PubMed  Google Scholar 

  30. Kalimuthu, P. and John, S.A., Selective determination of 3,4-dihydroxyphenylacetic acid in the presence of ascorbic and uric acids using polymer film modified electrode, J. Chem. Sci., 2011, vol. 123, p. 349.

    Article  CAS  Google Scholar 

  31. Chitravathi, S., Reddy, S., and Kumara Swamy, B.E., Electrochemical determination of ezetimibe by MgO nanoflakes-modified carbon paste electrode, J. Electroanal. Chem., 2016, vol. 764, p. 1.

    Article  CAS  Google Scholar 

  32. Beitollahi, H., Gholami, A., and Ganjali, M.R., Preparation, characterization and electrochemical application of Ag–ZnO nanoplates for voltammetric determination of glutathione and tryptophan using modified carbon paste electrode, Mater. Sci. Eng. C, 2015, vol. 57, p. 107.

    Article  CAS  Google Scholar 

  33. Xu, M., Ma, M., and Ma, E., Electrochemical determination of tryptophan based on silicon dioxide nanopartilces modified carbon paste electrode, Russ. J. Electrochem., 2012, vol. 48, p. 489.

    Article  CAS  Google Scholar 

  34. Kumar, M. and Kumara Swamy, B.E., Role of heat on the development of electrochemical sensors on bare and modified Co3O4/CuO composite nanopowder carbon paste electrodes, Mater. Sci. Eng. C, 2016, vol. 58, p. 142.

    Article  CAS  Google Scholar 

  35. Norouzi, B. and Mirkazemi, T., Electrochemical sensor for amoxicillin using Cu/poly (o-toluidine) (sodium dodecyl sulfate) modified carbon paste electrode. Russ. J. Electrochem., 2016, vol. 52, p. 37.

    CAS  Google Scholar 

  36. Beitollahi, H. and Nekooei, S., Application of a modified CuO nanoparticles carbon paste electrode for simultaneous determination of isoperenaline, acetaminophen and N-acetyl-L-cysteine, Electroanalysis, 2016, vol. 28, p. 645.

    Article  CAS  Google Scholar 

  37. Jalali, F. and Ranjbar, S., Electrocatalytic oxidation of captopril using a carbon-paste electrode modified with copper-cobalt hexacyanoferrate, Russ. J. Electrochem., 2014, vol. 50, p. 482.

    Article  CAS  Google Scholar 

  38. Khan, N.A., Hasan, Z., and Jhung, S.H., Ionic liquids supported on metal-organic frameworks: remarkable adsorbents for adsorptive desulfurization, Chem. Eur. J., 2014, vol. 20, p. 376.

    Article  CAS  PubMed  Google Scholar 

  39. Beitollahi, H., Tajik, S., and Biparva, P., Electrochemical determination of sulfite and phenol using a carbon paste electrode modified with ionic liquids and graphene nanosheets: application to determination of sulfite and phenol in real samples, Measurement, 2014, vol. 56, p. 170.

    Article  Google Scholar 

  40. Ruan, C., Sun, Z., Lu, S., Li, L., Lou, J., and Sun, W., Electrochemistry of adenosine-5'-diphosphate on ionic liquid modified carbon electrode and its detection, Russ. J. Electrochem., 2014, vol. 50, p. 129.

    Article  CAS  Google Scholar 

  41. Menart, E., Jovanovski, V., and Hocevar, S.B., Silver particle-decorated carbon paste electrode based on ionic liquid for improved determination of nitrite, Electrochem. Commun., 2015, vol. 52, p. 45.

    Article  CAS  Google Scholar 

  42. Beitollahi, H., Tajik, S., and Jahani, Sh., Electrocatalytic determination of hydrazine and phenol using a carbon paste electrode modified with ionic liquids and magnetic core-shell Fe3O4@SiO2/MWCNT nanocomposite, Electroanalysis, 2016, vol. 28, p. 1093.

    Article  CAS  Google Scholar 

  43. Qiao, L., Shougee, A., Albrecht, T., and Fobelets, K., Oxide-coated silicon nanowire array capacitor electrodes in room temperature ionic liquid, Electrochim. Acta, 2016, vol. 210, p. 32.

    Article  CAS  Google Scholar 

  44. Tajik, S., Taher, M.A., and Beitollahi, H., Application of a new ferrocene-derivative modified-graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline, Sens. Actuators B, 2014, vol. 197, p. 228.

    Article  CAS  Google Scholar 

  45. Atta, N.F., El-Ads, E.H., Ahmed, Y.M., and Galal, A., Determination of some neurotransmitters at cyclodextrin/ ionic liquid crystal/graphene composite electrode, Electrochim. Acta, 2016, vol. 199, p. 319.

    Article  CAS  Google Scholar 

  46. Foroughi, M.M., Beitollahi, H., Tajik, S., Hamzavi, M., and Parvan, H., Hydroxylamine electrochemical sensor based on a modified carbon nanotube paste electrode: application to determination of hydroxylamine in water samples, Int. J. Electrochem. Sci., 2014, vol. 9, p. 2955.

    Google Scholar 

  47. Mahmoudi Moghaddam, H. and Beitollahi, H., Simultaneous voltammetric determination of norepinephrine and acetaminophen at the surface of a modified carbon nanotube paste electrode, Int. J. Electrochem. Sci., 2011, vol. 6, p. 6503.

    Google Scholar 

  48. Wang, L., Huang, Y., Ding, X., Liu, P., Zong, M., Sun, X., Wang, Y., and Zhao, Y., Supraparamagnetic quaternary nanocomposites of graphene@Fe3O4@SiO2@SnO2: synthesis and enhanced electromagnetic absorption properties, Mater. Lett., 2013, vol. 109, p. 146.

    Article  CAS  Google Scholar 

  49. Wang, L., Zhu, J., Yang, H., Wang, F.,Qin, Y., Zhao, T., and Zhang, P., Fabrication of hierarchical graphene@Fe3O4@SiO2@polyaniline quaternary composite and its improved electrochemical performance, J. Alloys Compd., 2015, vol. 634, p. 232.

    CAS  Google Scholar 

  50. Guo, Q., Guo, P., Li, J., Yin, H., Liu, J., Xiao, F., Shen, D., and Li, N., Fe3O4–CNTs nanocomposites: inorganic dispersant assisted hydrothermal synthesis and application in lithium ion batteries, J. Solid State Chem., 2014, vol. 213, p. 104.

    Article  CAS  Google Scholar 

  51. Lai, B.H. and Chen, D.H., Vancomycin-modified LaB6@SiO2/Fe3O4 composite nanoparticles for nearinfrared photothermal ablation of bacteria, Acta Biomater., 2013, vol. 9, p. 7573.

    Article  CAS  PubMed  Google Scholar 

  52. Luo, Y., Lu, Z., Jiang, Y., Wang, D., Yang, L., Huo, P., Da, Z., Bai, X., Xie, X., and Yang, P., Selective photodegradation of 1-methylimidazole-2-thiol by the magnetic and dual conductive imprinted photocatalysts based on TiO2/Fe3O4/MWCNTs, Chem. Eng. J., 2014, vol. 240, p. 244.

    Article  CAS  Google Scholar 

  53. Li, Y., Yi, H., Tang, X., Liu, X., Wang, Y., Cui, B., and Zhao, S., Study on the performance of simultaneous desulfurization and denitrification of Fe3O4-TiO2 composites, Chem. Eng. J., 2016, vol. 304, p. 89.

    Article  CAS  Google Scholar 

  54. Li, Z.D., Wang, H.L., Wei, X.N., Liu, X.Y., Yang, Y.F., and Jiang, W.F., Preparation and photocatalytic performance of magnetic Fe3O4@TiO2 core–shell microspheres supported by silica aerogels from industrial fly ash, J. Alloys Compd., 2016, vol. 659, p. 240.

    Article  CAS  Google Scholar 

  55. Zhang, L., Wu, Z., Chen, L., Zhang, L., Li, X., Xu, H., Wang, H., and Zhu, G., Preparation of magnetic Fe3O4/TiO2/Ag composite microspheres with enhanced photocatalytic activity, Solid State Sci., 2016, vol. 52, p. 42.

    Article  CAS  Google Scholar 

  56. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Beitollahi.

Additional information

Published in Russian in Elektrokhimiya, 2018, Vol. 54, No. 12, pp. 1076–1085.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razmi, E.D., Beitollahi, H., Mahani, M.T. et al. TiO2/Fe3O4/Multiwalled Carbon Nanotubes Nanocomposite as Sensing Platform for Simultaneous Determination of Morphine and Diclofenac at a Carbon Paste Electrode. Russ J Electrochem 54, 1132–1140 (2018). https://doi.org/10.1134/S1023193518140057

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518140057

Keywords

Navigation