Skip to main content
Log in

Dendrogenomics Is a New Interdisciplinary Field of Research of the Adaptive Genetic Potential of Forest Tree Populations Integrating Dendrochronology, Dendroecology, Dendroclimatology, and Genomics

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

This mini-review is devoted to dendrogenomics, a new interdisciplinary field of research that integrates dendrochronology, dendroecology, dendroclimatology, genetics and genomics. This novel approach allows joint analyses of dendrological and genomic data and opens new ways to study temporal dynamics of forest treelines, to delineate spatial and temporal population structure and, most of all, to study the adaptive genetic potential of forest tree populations. These problems are especially relevant to predicting how climate change will shape distribution of boreal forest species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Park, A., Puettmann, K., Wilson, E., et al., Can boreal and temperate forest management be adapted to the uncertainties of 21st century climate change?, Crit. Rev. Plant Sci., 2014, vol. 33, no. 4, pp. 251—285. https://doi.org/10.1080/07352689.2014.858956

    Article  Google Scholar 

  2. Isaac-Renton, M., Montwé, D., Hamann, A., et al., Northern forest tree populations are physiologically maladapted to drought, Nat. Commun., 2018, vol. 9, no. 5254, pp. 1—9. https://doi.org/10.1038/s41467-018-07701-0

    Article  CAS  Google Scholar 

  3. Sánchez-Pinillos, M., D’Orangeville, L., Boulanger, Y., et al., Sequential droughts: a silent trigger of boreal forest mortality, Global Change Biol., 2022, vol. 28, no. 2, pp. 542—556. https://doi.org/10.1111/gcb.15913

    Article  CAS  Google Scholar 

  4. Kellomäki, S., Background: management of forest for varying ecosystem services, Management of Boreal Forests: Theories and Applications for Ecosystem Services, Cham, Switzerland: Springer-Verlag, 2022, pp. 1—9. https://doi.org/10.1007/978-3-030-88024-8_1.

  5. Tishkov, A., Boreal forests, The Physical Geography of Northern Eurasia Shahgedanova, M., Ed., Oxford: Oxford University Press, 2002, pp. 217—233.

    Google Scholar 

  6. Prunier, J., Verta, J.-P., and MacKay, J.J., Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function, New Phytol., 2016, vol. 209, no. 1, pp. 44—62. https://doi.org/10.1111/nph.13565

    Article  CAS  PubMed  Google Scholar 

  7. Neale, D.B. and Wheeler, N.C., The Conifers: Genomes, Variation and Evolution, Cham: Springer-Verlag, 2019. https://doi.org/10.1007/978-3-319-46807-5.

  8. Amaral, J., Ribeyre, Z., Vigneaud, J., et al., Advances and promises of epigenetics for forest trees, Forests, 2020, vol. 11, no. 9, p. 976. https://doi.org/10.3390/f11090976

  9. Vaganov, E.A., Hughes, M.K., and Shashkin, A.V., Growth Dynamics of Conifer Tree Rings: Images of Past and Future Environments, Berlin: Springer-Verlag, 2006. https://doi.org/10.1007/3-540-31298-6

  10. Arzac, A., Fonti, A.V., and Vaganov, E.A., An overview on dendrochronology and quantitative wood anatomy studies of conifers in Southern Siberia (Russia), Progress in Botany, Berlin: Springer-Verlag, 2021, pp. 1—22. https://doi.org/10.1007/124_2021_52

  11. Fritts, H.C., Vaganov, E.A., Sviderskaya, I.V., and Shashkin, A.V., Climatic variation and tree-ring structure in conifers: empirical and mechanistic models of tree-ring width, number of cells, cell size, cell-wall thickness and wood density, Clim. Res., 1991, vol. 1, no. 2, pp. 97—116. https://www.jstor.org/stable/24863301

    Article  Google Scholar 

  12. Fritts, H.C., Tree Rings and Climate, Caldwell: Blackburn, 2001, 2nd ed.

  13. Wang, T., Ren, H., and Ma, K., Climatic signals in tree ring of Picea schrenkiana along an altitudinal gradient in the central Tianshan Mountains, northwestern China, Trees, 2005, vol. 19, no. 6, pp. 736—742. https://doi.org/10.1007/s00468-005-0003-9

    Article  Google Scholar 

  14. Lloyd, A.H. and Bunn, A.G., Responses of the circumpolar boreal forest to 20th century climate variability, Environ. Res. Lett., 2007, vol. 2, no. 4, p. 045013. https://doi.org/10.1088/1748-9326/2/4/045013

  15. Cochran, P.H., Examples of Mortality and Reduced Annual Increments of White Fir Induced by Drought, Insects, and Disease at Different Stand Densities, Res. Note PNW-525, USDA Forest Service, Pacific Northwest Experiment Station, 1998. https://doi.org/10.2737/PNW-RN-525

  16. Speer, J.H., Swetnam, T.W., Wickman, B.E., and Youngblood, A., Changes in pandora moth outbreak dynamics during the past 622 years, Ecology, 2001, vol. 82, pp. 679—697. https://doi.org/10.1890/0012-9658(2001)082[0679:CIPMOD]2.0.CO;2

    Article  Google Scholar 

  17. Babushkina, E.A., Zhirnova, D.F., Belokopytova, L.V., et al., Response of four tree species to changing climate in a moisture-limited area of South Siberia, Forests, 2019, vol. 10, no. 11, p. 999. https://doi.org/10.3390/f10110999

  18. D’Arrigo, R., Frank, D., Pederson, N., et al., 1738 years of Mongolian temperature variability inferred from a tree-ring width chronology of Siberian pine. Geophys. Res. Lett., 2001, vol. 28, no. 3, pp. 543—546. https://doi.org/10.1029/2000GL011845

    Article  Google Scholar 

  19. Cooke, B.J., Nealis, V.G., and Régnière, J., Insect defoliators as periodic disturbances in northern forest ecosystems, Plant Disturbance Ecology, Johnson, E.A. and Miyanishi, K., Eds., Amsterdam: Academic, 2020, 2nd ed., pp. 423—461. https://doi.org/10.1016/B978-0-12-818813-2.00012-5

  20. Rozenberg, P., Chauvin, T., Escobar-Sandoval, M., et al., Climate warming differently affects Larix decidua ring formation at each end of a French Alps elevational gradient, Ann. For. Sci., 2020, vol. 77, no. 54, pp. 1—20. https://doi.org/10.1007/s13595-020-00958-w

    Article  Google Scholar 

  21. Belokopytova, L., Zhirnova, D., Kostyakova, T., and Babushkina, E., Dynamics of moisture regime and its reconstruction from a tree-ring width chronology of Pinus sylvestris in the downstream basin of the Selenga River, Russia, J. Arid Land., 2018, vol. 10, no. 6, pp. 877—891. https://doi.org/10.1007/s40333-018-0025-y

    Article  Google Scholar 

  22. Belokopytova, L.V., Zhirnova, D.F., Meko, D.M., et al., Tree rings reveal the impact of soil temperature on larch growth in the forest—steppe of Siberia, Forests, 2021, vol. 12, no. 12, p. 1765. https://doi.org/10.3390/f12121765

  23. Kostyakova, T.V., Touchan, R., Babushkina, E.A., and Belokopytova, L.V., Precipitation reconstruction for the Khakassia region, Siberia, from tree rings, Holocene, 2018, vol. 28, no. 3, pp. 377—385. https://doi.org/10.1177/0959683617729450

    Article  Google Scholar 

  24. Kostyakova, T.V., Belokopytova, L.V., Zhirnova, D.F., et al., Dendrochronological indication of phyllophages’ outbreaks by larch radial growth in the forest—steppe zone of the Republic of Tyva, Contemp. Probl. Ecol., 2021, vol. 14, no. 1, pp. 37—48. https://doi.org/10.1134/S1995425521010054

    Article  Google Scholar 

  25. Demina, A.V., Belokopytova, L.V., Zhirnova, D.F., et al., Degree of connectivity in reconstructed precipitation dynamics and extremes for semiarid regions across South Siberia, Dendrochronologia, 2022, vol. 71, no. 125903, pp. 1—12. https://doi.org/10.1016/j.dendro.2021.125903

    Article  Google Scholar 

  26. Demidko, D.A., Sultson, S.M., Mikhaylov, P.V., and Verkhovets, S.V., Influence of weather conditions and climate oscillations on the pine looper Bupalus piniaria (L.) outbreaks in the forest-steppe of the West Siberian Plain, Forests, 2022, vol. 13, no. 1, p. 15. https://doi.org/10.3390/f13010015

  27. Babushkina, E.A., Vaganov, E.A., Grachev, A.M., et al., The effect of individual genetic heterozygosity on general homeostasis, heterosis and resilience in Siberian larch (Larix sibirica Ledeb.) using dendrochronology and microsatellite loci genotyping, Dendrochronologia, 2016, vol. 38, pp. 26—37. https://doi.org/10.1016/j.dendro.2016.02.005

    Article  Google Scholar 

  28. Johnson, J.S., Gaddis, K.D., Cairns, D.M., and Krutovsky, K.V., Seed dispersal at alpine treeline: an assessment of seed movement within the alpine treeline ecotone, Ecosphere, 2017, vol. 8, no. 1, p. e01649. https://doi.org/10.1002/ecs2.1649

  29. Johnson, J.S., Chhetri, P., Krutovsky, K.V., and Cairns, D.M., Growth and its relationship to individual genetic diversity of mountain hemlock (Tsuga mertensiana) at alpine treeline in Alaska: combining dendrochronology and genomics, Forests, 2017, vol. 8, no. 11, p. 418. https://doi.org/10.3390/f8110418

  30. Johnson, J.S., Krutovsky, K.V., Rajora O.P., et al., Advancing biogeography through population genomics, Population Genomics: Concepts, Approaches and Applications, Om Rajora, Ed., Cham: Springer-Verlag, 2019, pp. 539—585. https://doi.org/10.1007/13836_2018_39

  31. Heer, K., Behringer, D., Piermattei, A., et al., Linking dendroecology and association genetics in natural populations: stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.), Mol. Ecol., 2018, vol. 27, no. 6, pp. 1428—1438. https://doi.org/10.1111/mec.14538

    Article  CAS  PubMed  Google Scholar 

  32. Piotti, A., Garbarino, M., Avanzi, C., et al., Influence of spatiotemporal dynamics on the fine-scale spatial genetic structure of differently managed Picea abies stands, Forests, 2018, vol. 9, no. 10, p. 622. https://doi.org/10.3390/f9100622

    Article  Google Scholar 

  33. Housset, J.M., Nadeau, S., Isabel, N., et al., Tree rings provide a new class of phenotypes for genetic associations that foster insights into adaptation of conifers to climate change, New Phytol., 2018, vol. 218, no. 2, pp. 630—645. https://doi.org/10.1111/nph.14968

    Article  PubMed  PubMed Central  Google Scholar 

  34. Evans, M.E.K., Gugger, P.F., Lynch, A.M., et al., Dendroecology meets genomics in the common garden: new insights into climate adaptation, New Phytol., 2018, vol. 218, no. 2, pp. 401—403. https://doi.org/10.1111/nph.15094

    Article  PubMed  Google Scholar 

  35. Trujillo-Moya, C., George, J.-P., Fluch, S., et al., Drought sensitivity of Norway spruce at the species’ warmest fringe: quantitative and molecular analysis reveals high genetic variation among and within provenances, Genes Genom. Genet., 2018, vol. 8, no. 4, pp. 1225—1245. https://doi.org/10.1534/g3.117.300524

    Article  Google Scholar 

  36. Avanzi, C., Piermattei, A., Piotti, A., et al., Disentangling the effects of spatial proximity and genetic similarity on individual growth performances in Norway spruce natural populations, Sci. Total Environ., 2019, vol. 650, part 1, pp. 493—504. https://doi.org/10.1016/j.scitotenv.2018.08.348

    Article  CAS  PubMed  Google Scholar 

  37. Avanzi, C., Heer, K., Büntgen, U., et al., Individual reproductive success in Norway spruce natural populations depends on growth rate, age and sensitivity to temperature, Heredity, 2020, vol. 124, pp. 685—698. https://doi.org/10.1038/s41437-020-0305-0

    Article  PubMed  PubMed Central  Google Scholar 

  38. Depardieu, C., Gérardi, S., Nadeau, S., et al., Connecting tree-ring phenotypes, genetic associations and transcriptomics to decipher the genomic architecture of drought adaptation in a widespread conifer, Mol. Ecol., 2021, vol. 30, no. 16, pp. 3898—3917. https://doi.org/10.1111/mec.15846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fasanella, M., Suarez, M.L., Hasbun, R., and Premoli, A.C., Individual-based dendrogenomic analysis of forest dieback driven by extreme droughts, Can. J. For. Res., 2021, vol. 51, no. 3, pp. 420—432. https://doi.org/10.1139/cjfr-2020-0221

    Article  CAS  Google Scholar 

  40. Venegas-González, A., Gibson-Capintero, S., Anholetto-Junior, C., et al., Tree-ring analysis and genetic associations help to understand drought sensitivity in the Chilean endemic forest of Nothofagus macrocarpa, Front. For. Global Change, 2022, vol. 5, no. 762347, pp. 1—13. https://doi.org/10.3389/ffgc.2022.762347

    Article  Google Scholar 

  41. Cappa, E.P., Klutsch, J.G., Sebastian-Azcona, J., et al., Integrating genomic information and productivity and climate-adaptability traits into a regional white spruce breeding program, PLoS One, 2022, vol. 17, no. 3, pp. 1—28. https://doi.org/10.1371/journal.pone.0264549

    Article  CAS  Google Scholar 

  42. Laverdière, J.-P., Lenz, P., Nadeau, S., et al., Breeding for adaptation to climate change: genomic selection for drought response in a white spruce multi-site polycross test, Evol. Appl., 2022, vol. 15, no. 3, pp. 383—402. https://doi.org/10.1111/eva.13348

  43. Lloret, F., Keeling, E.G., and Sala, A. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests, Oikos, 2011, vol. 120, no. 12, pp. 1909—1920. https://doi.org/10.1111/j.1600-0706.2011.19372.x

    Article  Google Scholar 

  44. Nikinmaa, L., Lindner, M., Cantarello, E., et al., Reviewing the use of resilience concepts in forest sciences, Curr. For. Rep., 2020, vol. 6, no. 2, pp. 61—80. https://doi.org/10.1007/s40725-020-00110-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vicente-Serrano, S.M., Quiring, S.M., Peña-Gallardo, M., et al., A review of environmental droughts: increased risk under global warming?, Earth-Sci. Rev., 2020, vol. 201, no. 102953, pp. 1—23. https://doi.org/10.1016/j.earscirev.2019.102953

    Article  Google Scholar 

  46. Schwarz, J., Skiadaresis, G., Kohler, M., et al., Quantifying growth responses of trees to drought—a critique of commonly used resilience indices and recommendations for future studies, Curr. For. Rep., 2020, vol. 6, no. 3, pp. 185—200. https://doi.org/10.1007/s40725-020-00119-2

    Article  Google Scholar 

  47. Van Meerbeek, K., Jucker, T., and Svenning, J.-C., Unifying the concepts of stability and resilience in ecology, J. Ecol., 2021, vol. 109, no. 9, pp. 3114—3132. https://doi.org/10.1111/1365-2745.13651

    Article  Google Scholar 

  48. Yi, C. and Jackson, N., A review of measuring ecosystem resilience to disturbance, Environ. Res. Lett., 2021, vol. 16, no. 5, p. 053008. https://doi.org/10.1088/1748-9326/abdf09

  49. Castagneri, D., Vacchiano, G., Hacket-Pain, A., et al., Meta-analysis reveals different competition effects on tree growth resistance and resilience to drought, Ecosystems, 2022, vol. 25, no. 1, pp. 30—43. https://doi.org/10.1007/s10021-021-00638-4

    Article  Google Scholar 

  50. Pretzsch, H., Río, M., Giammarchi F., et al., Changes of tree and stand growth: review and implications, Climate-Smart Forestry in Mountain Regions: Managing Forest Ecosystems, Tognetti, R. et al. Eds., Cham, Switzerland: Springer-Verlag, 2022, vol. 40, pp. 189—222. https://doi.org/10.1007/978-3-030-80767-2_6

  51. Vilonen, L., Ross, M., and Smith, M.D., What happens after drought ends: synthesizing terms and definitions, New Phytol., 2022. https://doi.org/10.1111/nph.18137

  52. Zlobin, I.E., Linking the growth patterns of coniferous species with their performance under climate aridization, Sci. Total Environ., 2022, vol. 851, no. 154971. https://doi.org/10.1016/j.scitotenv.2022.154971

  53. Haberstroh, S. and Werner, C., The role of species interactions for forest resilience to drought, Plant Biol. J., 2022. https://doi.org/10.1111/plb.13415.

  54. Hartmann, H., Bastos, A., Das, A.J., et al., Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide, Annu. Rev. Plant Biol., 2022, vol. 73, no. 25, pp. 1–30. https://doi.org/10.1146/annurev-arplant-102820-012804

    Article  CAS  Google Scholar 

  55. Serra-Maluquer, X., Mencuccini, M., and Martínez-Vilalta, J., Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula, Oecol., 2018, vol. 187, no. 1, pp. 343—354. https://doi.org/10.1007/s00442-018-4118-2

    Article  CAS  Google Scholar 

  56. Van Mantgem, P.J., Kerhoulas, L.P., Sherriff, R.L., and Wenderott, Z.J., Tree-ring evidence of forest management moderating drought responses: implications for dry, coniferous forests in the southwestern United States, Front. For. Global Change, 2020, vol. 3, no. 41, pp. 1—7. https://doi.org/10.3389/ffgc.2020.00041

    Article  Google Scholar 

  57. Zhirnova, D.F., Babushkina, E.A., Belokopytova, L.V., and Vaganov, E.A., To which side are the scales swinging? Growth stability of Siberian larch under permanent moisture deficit with periodic droughts, For. Ecol. Manag., 2020, vol. 459, no. 1, p. 117841. https://doi.org/10.1016/j.foreco.2019.117841

  58. Mihai, G., Alexandru, A.M., Stoica, E., and Birsan, M.V., Intraspecific growth response to drought of Abies alba in the Southeastern Carpathians, Forests, 2021, vol. 12, no. 4, p. 387. https://doi.org/10.3390/f12040387

  59. Belokopytova, L.V., Zhirnova, D.F., Krutovsky, K.V., et al., Species- and age-specific growth reactions to extreme droughts of the keystone tree species across forest—steppe and sub-taiga habitats of South Siberia, Forests, 2022, vol. 13, no. 7, p. 1027. https://doi.org/10.3390/f13071027

  60. Bohner, T. and Diez, J., Tree resistance and recovery from drought mediated by multiple abiotic and biotic processes across a large geographic gradient, Sci. Total Environ., 2021, vol. 789, no. 147744, pp. 1—10. https://doi.org/10.1016/j.scitotenv.2021.147744

    Article  CAS  Google Scholar 

  61. Campôa, J., Calvão, T., Firmino, P.N., and Pimentel, C.S., Disentangling the effects of climate and defoliation on forest growth: the case of an outbreak of a Thaumetopoea pityocampa population with a shifted phenology in a Pinus pinaster monoculture, For. Ecol. Manag., 2021, vol. 498, no. 119548. https://doi.org/10.1016/j.foreco.2021.119548

  62. Weigandt, M., Villacide, J., Bianchi, E., et al., Growth response of Pinus contorta to the synergy of stress factors: successive extreme drought events and a population outbreak of Sirex noctilio in NW Patagonia, New For., 2022. https://doi.org/10.1007/s11056-022-09907-z

  63. DeSoto, L., Cailleret, M., Sterck, F., et al., Low growth resilience to drought is related to future mortality risk in trees, Nat. Commun., 2020, vol. 11, no. 545, pp. 1—9. https://doi.org/10.1038/s41467-020-14300-5

    Article  CAS  Google Scholar 

  64. Mosca, E., Cruz, F., Gómez-Garrido, J., et al., A reference genome sequence for the European silver fir (Abies alba Mill.): a community-generated genomic resource, Genes Genom. Genet., 2019, vol. 9, no. 7, pp. 2039—2049. https://doi.org/10.1534/g3.119.400083

    Article  CAS  Google Scholar 

  65. Sun, C., Xie, Y.-H., Li, Z., et al., The Larix kaempferi genome reveals new insights into wood properties, J. Integr. Plant Biol., 2022. https://doi.org/10.1111/jipb.13265

  66. Niu, S., Li, J., Bo, W., et al., The Chinese pine genome and methylome unveil key features of conifer evolution, Cell, 2022, vol. 185, no. 1, pp. 204—217. https://doi.org/10.1016/j.cell.2021.12.006

    Article  CAS  PubMed  Google Scholar 

  67. Kuzmin, D.A., Feranchuk, S.I., Sharov, V.V., et al., Stepwise large genome assembly approach: a case of Siberian larch (Larix sibirica Ledeb.), BMC Bioinf., 2019, vol. 20, suppl. 1, no. 37, pp. 1—12. https://doi.org/10.1186/s12859-018-2570-y

  68. Belokon, M.M., Politov, D.V., Mudrik, E.A., et al., Development of microsatellite genetic markers in Siberian stone pine (Pinus sibirica Du Tour) based on the de novo whole genome sequencing, Russ. J. Genet., 2016, vol. 52, no. 12, pp. 1263—1271. https://doi.org/10.1134/S1022795416120036

    Article  CAS  Google Scholar 

  69. Oreshkova, N.V., Putintseva, Yu.A., Sharov, V.V., et al., Development of microsatellite genetic markers in Siberian larch (Larix sibirica Ledeb.) based on the de novo whole genome sequencing, Russ. J. Genet., 2017, vol. 53, no. 11, pp. 1194—1199. https://doi.org/10.1134/S1022795417110096

    Article  CAS  Google Scholar 

  70. Oreshkova, N.V., Bondar, E.I., Putintseva, Yu.A., et al., Development of nuclear microsatellite markers with long (tri-, tetra-, penta- and hexanucleotide) motives for three larch species based on the de novo whole genome sequencing of Siberian larch (Larix sibirica Ledeb.), Russ. J. Genet., 2019, vol. 55, no. 4, pp. 444—450. https://doi.org/10.1134/S1022795419040094

    Article  CAS  Google Scholar 

  71. Krutovsky, K.V., Putintseva, Y.A., Oreshkova, N.V., et al., Postgenomic technologies in practical forestry: development of genome-wide markers for timber origin identification and other applications, For. Eng. J., 2019, vol. 9, no. 1, pp. 9—16. https://doi.org/10.12737/article_5c92016b64af27.15390296

  72. Stevens, K.A, Wegrzyn, J.L, Zimin, A., et al., Sequence of the sugar pine megagenome, Genetics, 2016, vol. 204, no. 4, pp. 1613—1626. https://doi.org/10.1534/genetics.116.193227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dasgupta, M.G., Dharanishanthi, V., Agarwal, I., and Krutovsky, K.V., Development of genetic markers in Eucalyptus species by target enrichment and exome sequencing, PLoS One, 2015, vol. 10, no. 1, p. e0116528. https://doi.org/10.1371/journal.pone.0116528

  74. Dasgupta, M.G., Parveen, A.B.M., Shanmugavel, S., et al., Targeted re-sequencing and genome-wide association analysis for wood property traits in breeding population of Eucalyptus tereticornis × E. grandis, Genomics, 2021, vol. 113, no. 6, pp. 4276—4292. https://doi.org/10.1016/j.ygeno.2021.11.013

    Article  CAS  Google Scholar 

  75. Lu, M., Krutovsky, K.V., Nelson, C.D., et al., Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.). BMC Genomics, 2016, vol. 17, no. 730, pp. 1—11. https://doi.org/10.1186/s12864-016-3081-8

    Article  CAS  Google Scholar 

  76. Lu, M., Krutovsky, K.V., Nelson, C.D., et al., Association genetics of growth and adaptive traits in loblolly pine (Pinus taeda L.) using whole exome-discovered polymorphisms, Tree Genet. Genomes, 2017, vol. 13, no. 3. https://doi.org/10.1007/s11295-017-1140-1

  77. Parchman, T.L., Jahner, J.P., Uckele, K.A., et al., RADseq approaches and applications for forest tree genetics, Tree Genet. Genomes, 2018, vol. 14, no. 39, pp. 1—25. https://doi.org/10.1007/s11295-018-1251-3

    Article  Google Scholar 

  78. Aguirre, N.C., Filippi, C.V., Zaina, G., et al., Optimizing ddRADseq in non-model species: a case study in Eucalyptus dunnii Maiden, Agronomy, 2019, vol. 9, no. 9, p. 484. https://doi.org/10.3390/agronomy9090484

  79. Jia, K.-H., Zhao, W., Maier, P.A., et al., Landscape genomics predicts climate change-related genetic offset for the widespread Platycladus orientalis (Cupressaceae), Evol. Appl., 2020, vol. 13, no. 4, pp. 666—677. https://doi.org/10.1111/eva.12891

    Article  Google Scholar 

  80. Ulaszewski, B., Meger, J., and Burczyk, J., Comparative analysis of SNP discovery and genotyping in Fagus sylvatica L. and Quercus robur L. using RADseq, GBS, and ddRAD methods, Forests, 2021, vol. 12, no. 2, p. 222. https://doi.org/10.3390/f12020222

  81. Varas-Myrik, A., Sepúlveda-Espinoza, F., Fajardo, A., et al., Predicting climate change-related genetic offset for the endangered southern South American conifer Araucaria araucana, For. Ecol. Manage., 2022, vol. 504, no. 119856, pp. 1—11. https://doi.org/10.1016/j.foreco.2021.119856

    Article  Google Scholar 

  82. Grace, J., Berninger, F., and Nagy, L., Impacts of climate change on the tree line, Ann. Bot., 2002, vol. 90, no. 4, pp. 537—544. https://doi.org/10.1093/aob/mcf222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, Y., Li, D., Ren, P., et al., Heterogeneous responses of alpine treelines to climate warming across the Tibetan Plateau, Forests, 2022, vol. 13, no. 5, p. 788. https://doi.org/10.3390/f13050788

  84. Kruse, S., Kolmogorov, A.I., Pestryakova, L.A., and Herzschuh, U., Long-lived larch clones may conserve adaptations that could restrict treeline migration in northern Siberia, Ecol. Evol., 2020, vol. 10, no. 18, pp. 10017—10030. https://doi.org/10.1002/ece3.6660

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zacharias, M., Pampuch, T., Heer, K., et al., Population structure and the influence of microenvironment and genetic similarity on individual growth at Alaskan white spruce treelines, Sci. Total Environ., 2021, vol. 798, no. 149267, pp. 1—11. https://doi.org/10.1016/j.scitotenv.2021.149267

  86. Santini, F., Shestakova, T.A., Dashevskaya, S., et al., Dendroecological and genetic insights for future management of an old-planted forest of the endangered Mediterranean fir Abies pinsapo, Dendrochronologia, 2020, vol. 63, no. 125754, pp. 1—11. https://doi.org/10.1016/j.dendro.2020.125754

    Article  Google Scholar 

  87. Matallana-Ramirez, L.P., Whetten, R.W., Sanchez, G.M., and Payn, K.G., Breeding for climate change resilience: a case study of loblolly pine (Pinus taeda L.) in North America, Front. Plant Sci., 2021, vol. 12, no. 606908, pp. 1—22. https://doi.org/10.3389/fpls.2021.606908

    Article  Google Scholar 

  88. Hu, H. and Xiong, L., Genetic engineering and breeding of drought-resistant crops, Annu. Rev. Plant Biol., 2014, vol. 65, no. 1, pp. 715—741. https://doi.org/10.1146/annurev-arplant-050213-040000

    Article  CAS  PubMed  Google Scholar 

  89. Singh, P.K., Indoliya, Y., Agrawal, L., et al., Genomic and proteomic responses to drought stress and biotechnological interventions for enhanced drought tolerance in plants, Curr. Plant Biol., 2022, vol. 29, no. 100239, pp. 1—13. https://doi.org/10.1016/j.cpb.2022.100239

    Article  CAS  Google Scholar 

  90. Wang, H. and Qin, F. Genome-wide association study reveals natural variations contributing to drought resistance in crops, Front. Plant Sci., 2017, vol. 8, no. 110, pp. 1—12. https://doi.org/10.3389/fpls.2017.01110

    Article  Google Scholar 

  91. Pfenninger, M., Reuss, F., Kiebler, A., et al., Genomic basis for drought resistance in European beech forests threatened by climate change, eLife, 2021, vol. 10, no. e65532, pp. 1—17. https://doi.org/10.7554/eLife.65532

    Article  Google Scholar 

  92. Lebedev, V.G., Lebedeva, T.N., Chernodubov, A.I., and Shestibratov, K.A., Genomic selection for forest tree improvement: methods, achievements and perspectives, Forests, 2020, vol. 11, no. 11, p. 1190. https://doi.org/10.3390/f11111190

  93. Joshi, R.K., Bharat, S.S., and Mishra, R., Engineering drought tolerance in plants through CRISPR/Cas genome editing, 3 Biotech., 2020, vol. 10, no. 400, pp. 1—14. https://doi.org/10.1007/s13205-020-02390-3

  94. Cao, H.X., Vu, G.T.H, and Gailing, O., From genome sequencing to CRISPR-based genome editing for climate-resilient forest trees, Int. J. Mol. Sci., 2022, vol. 23, no. 2, p. 966. https://doi.org/10.3390/ijms23020966

Download references

ACKNOWLEDGMENTS

The author is grateful to D.F. Zhirnova and L.V. Belokopytova (Laboratory of Dendroecology and Ecological Monitoring of the Khakass Technical Institute—a branch of the Siberian Federal University, Abakan, Russian Federation) and S.V. Novikova and N.V. Oreshkova (Laboratory of Forest Genomics, Siberian Federal University, Krasnoyarsk, Russian Federation) for their help in preparing this review, and Claire Williams (Department of Environmental Science, American University, USA) for proofreading the manuscript.

Funding

This work was supported by the Russian Foundation for Basic Research within the framework of scientific projects no. 19-14-00120 “Study of genetic adaptation of trees to stress environmental factors on the basis of genome-wide and dendrochronological analysis in the context of global climate change” and no. 22-14-00083 “Dendrogenomic study of the adaptation of the Siberian stone pine in the Western Sayan to extreme environmental factors.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Krutovsky.

Ethics declarations

The author declares that he has no conflicts of interest. This article does not contain any studies involving animals or human participants performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krutovsky, K.V. Dendrogenomics Is a New Interdisciplinary Field of Research of the Adaptive Genetic Potential of Forest Tree Populations Integrating Dendrochronology, Dendroecology, Dendroclimatology, and Genomics. Russ J Genet 58, 1273–1286 (2022). https://doi.org/10.1134/S1022795422110059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422110059

Keywords:

Navigation