Skip to main content
Log in

CYP2C9, CYP4F2, VKORC1 Gene Polymorphism in Buryat Population

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The allele and genotype frequency distribution at polymorphic loci rs1799853 (430C>T) and rs1057910 (A1075C) of the CYP2C9 gene, rs2108622 (1347C>T) of the CYP4F2 gene, and rs9923231 (1639G>A) of the VKORC1 gene in the Buryat population was examined. The study involved 197 volunteers living in the Republic of Buryatia: 124 woman and 73 men, average age of 57.51 ± 10.88 years. Genetic typing of DNA samples was performed by polymerase chain reaction (RT-PCR). The frequency of the minor alleles *2 and *3 of the CYP2C9 gene was 2.03 and 3.05%, respectively. The frequency of the allele T of the CYP4F2 gene was 31.22%; the frequency of the allele A of the VKORC1 gene was 85.28%. The obtained results could be used in the prognosis of pharmacotherapy of warfarin in the population Buryat population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Goncharova, I.A., Babushkina, N.P., Minaycheva, L.I., et al., Prevalence of alleles of polymorphic variants Leu33Pro and Leu66Arg gene ITGB3 among inhabitants of Siberia Russ. J. Genet., 2013, vol. 49, no. 8, pp. 877—880. https://doi.org/10.1134/S1022795413070053

    Article  CAS  Google Scholar 

  2. Kolesnikova, L.I., Bairova, T.A., Pervushina, O.A., et al., Association of (192) Q>R polymorphism of the paraoxonase gene with a lipid profile and components of lipid peroxidation and antioxidant protection in populations of Russians and Buryats from Eastern Siberia, Russ. J. Genet., 2015, vol. 51, no. 2, pp. 193—197. https://doi.org/10.1134/S102279541502009X

    Article  CAS  Google Scholar 

  3. Alomar, M.J., Factors affecting the development of adverse drug reactions, Saudi Pharm. J., 2014, vol. 22, no. 2, pp. 83—94. https://doi.org/10.1016/j.jsps.2013.02.003

    Article  PubMed  Google Scholar 

  4. Mustafina, O.E., Tuktarova, I.A., Karimov, D.D., et al., CYP2D6, CYP3A5, and CYP3A4 gene polymorphisms in Russian, Tatar, and Bashkir populations. Russ. J. Genet., 2015, vol. 51, no. 1, pp. 98—107. https://doi.org/10.1134/S1022795415010081

    Article  CAS  Google Scholar 

  5. https://www.fda.gov/drugs/science-and-research-drugs/ table-pharmacogenomic-biomarkers-drug-labeling.

  6. Freedman, M.D., Oral anticoagulants: pharmacodynamics, clinical indications and adverse effects, J. Clin. Pharmacol., 1992, vol. 32, no. 3, pp. 196—209. https://doi.org/10.1002/j.1552-4604.1992.tb03827.x

    Article  CAS  PubMed  Google Scholar 

  7. Altshuler, D. and Donnelly, P., International HapMap Consortium: a haplotype map of the human genome, Nature, 2005, vol. 437, no. 7063, pp. 1299—1320. https://doi.org/10.1038/nature04226

    Article  CAS  Google Scholar 

  8. Sawyer, S.L., Mukherjee, N., Pakstis, A.J., et al., Linkage disequilibrium patterns vary substantially among populations, Eur. J. Hum. Genet., 2005, vol. 13, no. 5, pp. 677—686. https://doi.org/10.1038/sj.ejhg.5201368

    Article  CAS  PubMed  Google Scholar 

  9. Makeeva, O., Stepanov, V., Puzyrev, V., et al., Global pharmacogenetics: genetic substructure of Eurasian populations and its effect on variants of drug-metabolizing enzymes, Pharmacogenomics, 2008, vol. 9, no. 7, pp. 847—868. https://doi.org/10.2217/14622416.9.7.847

    Article  CAS  PubMed  Google Scholar 

  10. Sangadeeva, D.Ts., Daindorov, D.S., Pushkarev, B.S., et al., Frequency of VKORC1 genetic polymorphism among Russians and Buryats in the Trans-Baikal Territory, Med. Zavtrashnego Dnya, 2017, pp. 299—300.

    Google Scholar 

  11. Sanderson, S., Emery, J., and Higgins, J., CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuG Enet™ systematic review and meta-analysis, Genet. Med., 2005, vol. 7, no. 2, pp. 97—104.

    Article  CAS  Google Scholar 

  12. NIH, Genome Reference Consortium, The International Genome Sample Resource. http://www.1000genomes.org/.

  13. Averin, A.N., Native minorities: development dynamics, Vestn. Beloruss. Gos. Univ., 2015, no. 14, pp. 70—75.

  14. Vasilyev, F.F., Danilova, D.A., Kaimonov, V.S., et al., Frequency distribution of polymorphisms of CYP2C19, CYP2C9, VKORC1 and SLCO1B1 genes in the Yakut population, Res. Pharm. Sci., 2016, vol. 11, no. 3, pp. 259—264.

    PubMed  PubMed Central  Google Scholar 

  15. Korytina, G., Kochetova, O., Akhmadishina, L., et al., Polymorphism of cytochrome P450 genes in three ethnic groups from Russia, Balkan. Med. J., 2012, vol. 29, pp. 252—260. https://doi.org/10.1089/gtmb.2017.0036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Korchagina, R.P., Osipova, L.P., Vavilova, N.A., et al., Genetic polymorphism of drug-metyabolising cytochrome P450 2C9 in native minorities of Northern Siberia, Sib. Nauchn. Med. Zh., 2011, vol. 31, no. 6, pp. 39—46.

    Google Scholar 

  17. Lavrinov, P.A., Belova, N.I., and Vorob’eva, N.A., VKORC1-1639 G/A and 1173 C/T gene polymorphisms in the indigenous population of the Nenets Autonomous Okrug, Uch. Zap. S.-Peterb. Gos. Med. Univ. im. I. P. Pavlova, 2014, vol. 21, no. 2, pp. 33—36.

    Google Scholar 

  18. Shuev, G.N., Sychev, D.A., Suleimanov, S.Sh., et al., Comparison of the polymorphism frequency of CYP2C9, CYP2C19, CYP2D6, ABCB1, SLCO1B1 genes in ethnic groups of Nanai and Russians, Farmakogenet. Farmakogenomika, 2016, no. 2, pp. 12—18.

  19. Bairova, T.A., Novikova, E.A., Belyalov, F.I., et al., Prevalence of polymorphisms of genes of cytochrome P450—warfarin metabolizers—in Eastern Siberia, Acta Biomed. Sci., 2018, vol. 3, no. 5, pp. 39—48. https://doi.org/10.29413/ABS.2018-3.5.6

    Article  Google Scholar 

  20. Sychev, D.A., Rozhkov, A.V., Ananichuk, A.V., and Kazakov, R.E., Evaluation of genotype-guided acenocoumarol dosing algorithms in Russian patients, Drug Metab. Pers. Ther., 2017, vol. 32, no. 2, pp. 109—114. https://doi.org/10.1515/dmpt-2016-0043

    Article  CAS  PubMed  Google Scholar 

  21. Gaikovitch, E.A., Cascorbi, I., Mrozikiewicz, P.M., et al., Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population, Eur. J. Clin. Pharmacol., 2003, vol. 59, no. 4, pp. 303—312. https://doi.org/10.1007/s00228-003-0606-2

    Article  CAS  PubMed  Google Scholar 

  22. Baturin, V.A., Tsarukyan, A.A., and Kolodiichuk, E.V., Study of CYP2C9 gene polymorphism in ethnic groups of the Stavropol krai population, Med. Vestn. Sev. Kavkaza, 2014, vol. 9, no. 1, pp. 45—48.

    Google Scholar 

  23. Dai, D.P., Xu, R.A., Hu, L.M., et al., CYP2C9 polymorphism analysis in Han Chinese populations: building the largest allele frequency database, Pharmacogenomics J., 2014, vol. 14, no. 1, pp. 85—92. https://doi.org/10.1038/tpj.2013.2

    Article  CAS  PubMed  Google Scholar 

  24. Li, S., Zou, Y., Wang, X., et al., Warfarin dosage response related pharmacogenetics in Chinese population, PLoS One, 2015, vol. 10, no. 1. e0116463. https://doi.org/10.1371/journal.pone.0116463

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cen, H.J., Zeng, W.T., Leng, X.Y., et al., CYP4F2 rs2108622: a minor significant genetic factor of warfarin dose in Han Chinese patients with mechanical heart valve replacement, Brit. J. Clin. Pharmacol., 2010, vol. 70, no. 2, pp. 234—240. https://doi.org/10.1111/j.1365-2125.2010.03698.x

    Article  CAS  Google Scholar 

  26. Yoshizawa, M., Hayashi, H., Tashiro, Y., et al., Effect of VKORC1–1639 G>A polymorphism, body weight, age, and serum albumin alterations on warfarin response in Japanese patients, Thromb. Res., 2009, vol. 124, no. 2, pp. 161—166. https://doi.org/10.1016/j.thromres.2008.11.011

    Article  CAS  PubMed  Google Scholar 

  27. Sasano, M., Ohno, M., Fukuda, Y., et al., Verification of pharmacogenomics-based algorithms to predict warfarin maintenance dose using registered data of Japanese patients, Eur. J. Clin. Pharmacol., 2019, vol. 75, no. 7, pp. 901—911. https://doi.org/10.1007/s00228-019-02656-7

    Article  CAS  PubMed  Google Scholar 

  28. Yoon, Y.R., Shon, J.H., Kim, M.K., et al., Frequency of cytochrome P450 2C9 mutant alleles in a Korean population, Brit. J. Clin. Pharmacol., 2001, vol. 51, no. 3, pp. 277—280. https://doi.org/10.1046/j.1365-2125.2001.00340.x

    Article  CAS  Google Scholar 

  29. Kim, K.A., Song, W.G., Lee, H.M., et al., Multiplex pyrosequencing method to determine CYP2C9* 3, VKORC1* 2, and CYP4F2* 3 polymorphisms simultaneously: its application to a Korean population and comparisons with other ethnic groups, Mol. Biol. Rep., 2014, vol. 41, no. 11, pp. 7305—7312. https://doi.org/10.1007/s11033-014-3617-4

    Article  CAS  PubMed  Google Scholar 

  30. Wen, M.S., Lee, M., Chen, J.J., et al., Prospective study of warfarin dosage requirements based on CYP2C9 and VKORC1 genotypes, Clin. Pharmacol. Ther., 2008, vol. 84, no. 1, pp. 83—89. https://doi.org/10.1038/sj.clpt.6100453

    Article  CAS  PubMed  Google Scholar 

  31. Lee, M.M., Chen, C.H., Chou, C.H., et al., Genetic determinants of warfarin dosing in the Han-Chinese population, Pharmacogenomics, 2009, vol. 10, no. 12, pp. 1905—1913. https://doi.org/10.2217/pgs.09.106

    Article  CAS  PubMed  Google Scholar 

  32. Wattanachai, N., Kaewmoongkun, S., Pussadhamma, B., et al., The impact of non-genetic and genetic factors on a stable warfarin dose in Thai patients, Eur. J. Clin. Pharmacol., 2017, vol. 73, no. 8, pp. 973—980. https://doi.org/10.1007/s00228-017-2265-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gan, G.G., Phipps, M.E., Lee, M.M., et al., Contribution of VKORC1 and CYP2C9 polymorphisms in the interethnic variability of warfarin dose in Malaysian populations, Ann. Hematol., 2011, vol. 90, no. 6, pp. 635—641. https://doi.org/10.1007/s00277-010-1119-6

    Article  CAS  PubMed  Google Scholar 

  34. Singh, O., Sandanaraj, E., Subramanian, K., et al., Influence of CYP4F2 rs2108622 (V433M) on warfarin dose requirement in Asian patients, Drug Metab. Pharmacokinet., 2011, vol. 26, no. 2, pp. 130—136. https://doi.org/10.2133/dmpk.DMPK-10-RG-080

    Article  CAS  PubMed  Google Scholar 

  35. Rusdiana, T., Araki, T., Nakamura, T., et al., Responsiveness to low-dose warfarin associated with genetic variants of VKORC1, CYP2C9, CYP2C19, and CYP4F2 in an Indonesian population, Eur. J. Clin. Pharmacol., 2013, vol. 69, no. 3, pp. 395—405. https://doi.org/10.1007/s00228-012-1356-9

    Article  CAS  PubMed  Google Scholar 

  36. Suriapranata, I.M., Tjong, W.Y., Wang, T., et al., Genetic factors associated with patient-specific warfarin dose in ethnic Indonesians, BMC Med. Genet., 2011, vol. 12, no. 1, pp. 80—88. https://doi.org/10.1186/1471-2350-12-80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar, D.K., Shewade, D.G., Loriot, M.A., et al., Effect of CYP2C9, VKORC1, CYP4F2 and GGCX genetic variants on warfarin maintenance dose and explicating a new pharmacogenetic algorithm in South Indian population, Eur. J. Clin. Pharmacol., 2014, vol. 70, no. 1, pp. 47—56. https://doi.org/10.1007/s00228-013-1581-x

    Article  CAS  Google Scholar 

  38. Kumar, D.K., Shewade, D.G., Manjunath, S., et al., Inter and intra ethnic variation of vitamin K epoxide reductase complex and cytochrome P450 4F2 genetic polymorphisms and their prevalence in South Indian population, Indian J. Hum. Genet., 2013, vol. 19, no. 3, pp. 301—310. https://doi.org/10.4103/0971-6866.120817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Namazi, S., Azarpira, N., Hendijani, F., et al., The impact of genetic polymorphisms and patient characteristics on warfarin dose requirements: a cross-sectional study in Iran, Clin. Ther., 2010, vol. 32, no. 6, pp. 1050—1060. https://doi.org/10.1016/j.clinthera.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  40. Khosropanah, S., Faraji, S.N., Habibi, H., et al., Correlation between rs2108622 locus of CYP4F2 gene single nucleotide polymorphism and warfarin dosage in Iranian cardiovascular patients, Iran. J. Pharm. Res., 2017, vol. 16, no. 3, pp. 1238—1246.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kocael, A., Eronat, A.P., Tüzüner, M.B., et al., Interpretation of the effect of CYP2C9, VKORC1 and CYP4F2 variants on warfarin dosing adjustment in Turkey, Mol. Biol. Rep., 2019, vol. 46, no. 2, pp. 1825—1833. https://doi.org/10.1007/s11033-019-04634-9

    Article  CAS  PubMed  Google Scholar 

  42. Spitsyna, N.Kh., Bychkovskaya, L.S., Makarov, S.V., et al., Genetic variation amongst Selkups of the North-Western Siberia, Vestn. Mosk. Gos. Univ., Ser. XXIII. Antropol., 2013, vol. 23, no. 3, pp. 120—126.

    Google Scholar 

  43. Johnson, J.A., Caudle, K.E., Gong, L., et al., Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for pharmacogenetics-guided warfarin dosing: 2017 update, Clin. Pharmacol. Ther., 2017, vol. 102, no. 3, pp. 397—404. https://doi.org/10.1002/cpt.668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alvarellos, M.L., Sangkuhl, K., Daneshjou, R., et al., PharmGKB summary: very important pharmacogene information for CYP4F2, Pharmacogenet. Genomics, 2015, vol. 25, no. 1, pp. 41—47. https://doi.org/10.1097/FPC.0000000000000100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Caldwell, M.D., Awad, T., Johnson, J.A., et al., CYP4F2 genetic variant alters required warfarin dose, Blood, 2008, vol. 111, no. 8, pp. 4106—4112. https://doi.org/10.1182/blood-2007-11-122010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. D’Andrea, G., D’Ambrosio, R.L., Perna, P., et al., A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin, Blood, 2005, vol. 105, no. 2, pp. 645—649. https://doi.org/10.1182/blood-2004-06-2111

    Article  CAS  PubMed  Google Scholar 

  47. Rieder, M.J., Reiner, A.P., Gage, B.F., et al., Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose, N. Engl. J. Med., 2005, vol. 352, no. 22, pp. 2285—2293. https://doi.org/10.1056/NEJMoa044503

    Article  CAS  PubMed  Google Scholar 

  48. Yuan, H.Y., Chen, J.J., Lee, M.M., et al., A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity, Hum. Mol. Genet., 2005, vol. 14, no. 13, pp. 1745—1751. https://doi.org/10.1093/hmg/ddi180

    Article  CAS  PubMed  Google Scholar 

  49. Gage, B.F., Eby, C., Johnson, J.A., et al., Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin, Clin. Pharmacol. Ther., 2008, vol. 84, no. 3, pp. 326—331. https://doi.org/10.1038/clpt.2008.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sipeky, C., Csongei, V., Jaromi, L., et al., Vitamin K epoxide reductase complex 1 (VKORC1) haplotypes in healthy Hungarian and Roma population samples, Pharmacogenomics, 2009, vol. 10, no. 6, pp. 1025—1032. https://doi.org/10.2217/pgs.09.46

    Article  CAS  PubMed  Google Scholar 

  51. Sipeky, C., Lakner, L., Szabo, M., et al., Interethnic differences of CYP2C9 alleles in healthy Hungarian and Roma population samples: relationship to worldwide allelic frequencies, Blood Cells, Mol. Dis., 2009, vol. 43, no. 3, pp. 239—242. https://doi.org/10.1016/j.bcmd.2009.05.005

    Article  CAS  Google Scholar 

  52. Sipeky, C., Weber, A., Melegh, B.I., et al., Interethnic variability of CYP4F2 (V433M) in admixed population of Roma and Hungarians, Environ. Toxicol. Pharmacol., 2015, vol. 40, no. 1, pp. 280—283. https://doi.org/10.1016/j.etap.2015.05.008

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Sambyalova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in a study involving people comply with the ethical standards of the institutional and/or national committee for research ethics and the 1964 Helsinki Declaration and its subsequent changes or comparable ethical standards. Informed voluntary consent was obtained from each of the participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sambyalova, A.Y., Bairova, T.A., Belyaeva, E.V. et al. CYP2C9, CYP4F2, VKORC1 Gene Polymorphism in Buryat Population. Russ J Genet 56, 1496–1503 (2020). https://doi.org/10.1134/S1022795420120121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795420120121

Keywords:

Navigation