Skip to main content
Log in

Shared Signatures of Selection Related to Adaptation and Acclimation in Local Cattle and Sheep Breeds from Russia

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The aim of this study was to identify common candidate genes related to environmental adaptation including the cold climates in Russian native cattle and sheep breeds. We made use of our previously published data on candidate regions under selection in the genomes of nine Russian native cattle breeds and 15 Russian sheep breeds using two approaches: the hapFLK and DCMS. We choose one top gene per candidate region under selection for the present study. The total number of genes across all selected regions was 2143 for the cattle and 7706 for the sheep breeds (p-value < 0.05). Of these 1262 genes were shared between the two lists and potentially underwent positive selection in both species. Among them 31 genes were independently reported to be under selection in at least two species of cold-adapted Arctic mammals. Strikingly, the NEB gene, likely associated with heat production via shivering thermogenesis, was found in positively selected regions in the cattle, sheep, mammoth, polar bear, and whale genomes. The shared list of 1262 genes was enriched for genes that are expressed in the brain, uterus, and blood vessels. The latter group may be associated with adaptation to cold climates due to the known contribution of blood vessels to thermogenesis. Our analysis points to a list of shared genes which could be related to adaptation to cold climates in the Russian cattle and sheep breeds and animals from the Arctic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Parsons, P.A., Environments and evolution: interactions between stress, resource inadequacy and energetic efficiency, Biol. Rev. Cambridge Philos. Soc., 2005, vol. 80, no. 4, pp. 589—610.

    Article  PubMed  Google Scholar 

  2. Gompel, N. and Prud’homme, B., The causes of repeated genetic evolution, Dev. Biol., 2009, vol. 332, no. 1, pp. 36—47. https://doi.org/10.1016/j.ydbio.2009.04.040

    Article  CAS  PubMed  Google Scholar 

  3. Stern, D.L. and Orgogozo, V., Is genetic evolution predictable?, Science, 2009, vol. 323, no. 5915, pp. 746—751. https://doi.org/10.1126/science.1158997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Losos, J.B., Convergence, adaptation, and constraint, Evolution, 2011, vol. 65, no. 7, pp. 1827—1840. https://doi.org/10.1111/j.1558-5646.2011.01289.x

    Article  PubMed  Google Scholar 

  5. Storz, J.F., Causes of molecular convergence and parallelism in protein evolution, Nat. Rev. Genet., 2016, vol. 17, no. 4, pp. 239—250. https://doi.org/10.1038/nrg.2016.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fang, X., Seim, I., Huang, Z., et al., Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes, Cell Rep., 2014, vol. 8, no. 5, pp. 1354—1364. https://doi.org/10.1016/j.celrep.2014.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun, X., Zhang, Z., Sun, Y., et al., Comparative genomics analyses of alpha-keratins reveal insights into evolutionary adaptation of marine mammals, Front. Zool., 2017, vol. 14, p. 41. https://doi.org/10.1186/s12983-017-0225-x

    Article  PubMed  PubMed Central  Google Scholar 

  8. Foote, A.D., Liu, Y., Thomas, G.W., et al., Convergent evolution of the genomes of marine mammals, Nat. Genet., 2015, vol. 47, no. 3, pp. 272—275. https://doi.org/10.1038/ng.3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lambert, M.J., Nevue, A.A., and Portfors, C.V., Contrasting patterns of adaptive sequence convergence among echolocating mammals, Gene, 2017, vol. 605, pp. 1—4. https://doi.org/10.1016/j.gene.2016.12.017

    Article  CAS  PubMed  Google Scholar 

  10. Zhu, K., Ge, D., Wen, Z., et al., Evolutionary genetics of hypoxia and cold tolerance in mammals, J. Mol. Evol., 2018, vol. 86, no. 9, pp. 618—634. https://doi.org/10.1007/s00239-018-9870-8

    Article  CAS  PubMed  Google Scholar 

  11. Wilkins, A.S., Wrangham, R.W., and Fitch, W.T., The “domestication syndrome” in mammals: a unified explanation based on neural crest cell behavior and genetics, Genetics, 2014, vol. 197, no. 3, pp. 795—808. https://doi.org/10.1534/genetics.114.165423

    Article  PubMed  PubMed Central  Google Scholar 

  12. Belyaev, D.K., Destabilizing selection as a factor in domestication, J. Hered., 1979, vol. 70, no. 5, pp. 301—308.

    Article  CAS  PubMed  Google Scholar 

  13. Prasolova, L.A. and Trut, L.N., Effect of the “Star” gene on the rate of melanoblast migration in silver fox (Vulpes vulpes) embryos, Dokl. Biol. Sci., vol. 329, nos. 1—6, pp. 787—789.

  14. Larkin, D.M. and Yudin, N.S., The genomes and history of domestic animals, Mol. Genet. Microbiol. Virol., 2016, vol. 31, no. 4, pp. 197—202. https://doi.org/10.3103/S0891416816040054

    Article  Google Scholar 

  15. Andersson, L., Genetic dissection of phenotypic diversity in farm animals, Nat. Rev. Genet., 2001, vol. 2, no. 2, pp. 130—138. https://doi.org/10.1038/35052563

    Article  CAS  PubMed  Google Scholar 

  16. Schmutz, S.M. and Berryere, T.G., Genes affecting coat colour and pattern in domestic dogs: a review, Anim. Genet., 2007, vol. 38, no. 6, pp. 539—549.

    Article  CAS  PubMed  Google Scholar 

  17. Cieslak, M., Reissmann, M., Hofreiter, M., and Ludwig, A., Colours of domestication, Biol. Rev. Cambridge Philos. Soc., 2011, vol. 86, no. 4, pp. 885—899. https://doi.org/10.1111/j.1469-185X.2011.00177.x

    Article  PubMed  Google Scholar 

  18. Reissmann, M. and Ludwig, A., Pleiotropic effects of coat colour-associated mutations in humans, mice and other mammals, Semin. Cell Dev. Biol., 2013, vol. 24, nos. 6—7, pp. 576—586. https://doi.org/10.1016/j.semcdb.2013.03.014

    Article  CAS  PubMed  Google Scholar 

  19. Fontanesi, L., Scotti, E., and Russo, V., Analysis of SNPs in the KIT gene of cattle with different coat colour patterns and perspectives to use these markers for breed traceability and authentication of beef and dairy products, Ital. J. Anim. Sci., 2010, vol. 9. e42. https://doi.org/10.4081/ijas.2010.e42

    Article  Google Scholar 

  20. Yudin, N.S., Belonogova, N.M., and Larkin, D.M., Genes related to the white face colour pattern in eight Russian cattle breeds, Vavilovskii Zh. Genet. Sel., 2018, vol. 22, no. 2, pp. 217—223. https://doi.org/10.18699/VJ18.350

    Article  Google Scholar 

  21. Yurchenko, A.A., Daetwyler, H.D., Yudin, N., et al., Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation, Sci. Rep., 2018, vol. 8, no. 1, p.12984. https://doi.org/10.1038/s41598-018-31304-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yurchenko, A.A., Deniskova, T.E., Yudin, N.S., et al., High-density genotyping reveals signatures of selection related to acclimation and economically important traits in 15 local sheep breeds from Russia, BMC Genomics, 2019, vol. 20, Suppl 3, pp. 294. https://doi.org/10.1186/s12864-019-5537-0

  23. Yurchenko, A., Yudin, N., Aitnazarov, R., et al., Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds, Heredity (Edinburgh), 2018, vol. 120, no. 2, pp. 125—137. https://doi.org/10.1038/s41437-017-0024-3

    Article  CAS  PubMed  Google Scholar 

  24. Fariello, M.I., Boitard, S., Naya, H., et al., Detecting signatures of selection through haplotype differentiation among hierarchically structured populations, Genetics, 2013, vol. 193, no. 3, pp. 929—941. https://doi.org/10.1534/genetics.112.147231

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ma, Y., Ding, X., Qanbari, S., et al., Properties of different selection signature statistics and a new strategy for combining them, Heredity (Edinburgh), 2015, vol. 115, no. 5, pp. 426—436. https://doi.org/10.1038/hdy.2015.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ballingall, K.T. and McKeever, D.J., Conservation of promoter, coding and intronic regions of the non-classical MHC class II DYA gene suggests evolution under functional constraints, Anim. Genet., 2005, vol. 36, no. 3, pp. 237—239. https://doi.org/10.1111/j.1365-2052.2005.01281.x

    Article  CAS  PubMed  Google Scholar 

  27. Wells, A., Kopp, N., Xu, X., et al., The anatomical distribution of genetic associations, Nucleic Acids Res., 2015, vol. 43, no. 22, pp. 10804—10820. https://doi.org/10.1093/nar/gkv1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mele, M., Ferreira, P.G., Reverter, F., et al., Human genomics: the human transcriptome across tissues and individuals, Science, 2015, vol. 348, no. 6235, pp. 660—665. https://doi.org/10.1126/science.aaa0355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eden, E., Navon, R., Steinfeld, I., et al., Gorilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists, BMC Bioinform., 2009, vol. 10, p. 48. https://doi.org/10.1186/1471-2105-10-48

    Article  Google Scholar 

  30. Yudin, N.S., Larkin, D.M., and Ignatieva, E.V., A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments, BMC Genet., 2017, vol. 18, suppl. 1, p. 111. https://doi.org/10.1186/s12863-017-0580-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ottenheijm, C.A. and Granzier, H., Lifting the nebula: novel insights into skeletal muscle contractility, Physiology (Bethesda), 2010, vol. 25, no. 5, pp. 304—310. https://doi.org/10.1152/physiol.00016.2010

    Article  CAS  PubMed  Google Scholar 

  32. Labeit, S., Ottenheijm, C.A., and Granzier, H., Nebulin, a major player in muscle health and disease, FASEB J., 2011, vol. 25, no. 3, pp. 822—829. https://doi.org/10.1096/fj.10-157412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, F., Buck, D., De Winter, J., et al., Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy, Hum. Mol. Genet., 2015, vol. 24, no. 18, pp. 5219—5233. https://doi.org/10.1093/hmg/ddv243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ottenheijm, C.A., Witt, C.C., Stienen, G.J., et al., Thin filament length dysregulation contributes to muscle weakness in nemaline myopathy patients with nebulin deficiency, Hum. Mol. Genet., 2009, vol. 18, no. 13, pp. 2359—2369. https://doi.org/10.1093/hmg/ddp168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tansey, E.A. and Johnson, C.D., Recent advances in thermoregulation, Adv. Physiol. Educ., 2015, vol. 39, no. 3, pp. 139—148. https://doi.org/10.1152/advan.00126.2014

    Article  PubMed  Google Scholar 

  36. Rowland, L.A., Bal, N.C., and Periasamy, M., The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy, Biol. Rev. Cambridge Philos. Soc., 2015, vol. 90, no. 4, pp. 1279—1297. https://doi.org/10.1111/brv.12157

    Article  PubMed  Google Scholar 

  37. Nowack, J., Giroud, S., Arnold, W., and Ruf, T., Muscle non-shivering thermogenesis and its role in the evolution of endothermy, Front. Physiol., 2017, vol. 8, p. 889. https://doi.org/10.3389/fphys.2017.00889

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lee, S.H., Cho, Y.M., Lee, S.H., et al., Identification of marbling-related candidate genes in M. longissimus dorsi of high- and low marbled Hanwoo (Korean native cattle) steers, BMB Rep., 2008, vol. 41, no. 12, pp. 846—851.

    Article  CAS  PubMed  Google Scholar 

  39. Ilian, M.A., Bekhit Ael-D., Stevenson, B., et al., Up- and down-regulation of longissimus tenderness parallels changes in the myofibril-bound calpain 3 protein, Meat Sci., 2004, vol. 67, no. 3, pp. 433—445. https://doi.org/10.1016/j.meatsci.2003.11.016

    Article  CAS  PubMed  Google Scholar 

  40. Melody, J.L., Lonergan, S.M., Rowe, L.J., et al., Early postmortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles, J. Anim. Sci., 2004, vol. 82, no. 4, pp. 1195—1205.

    Article  CAS  PubMed  Google Scholar 

  41. Franceschini, G., Apolipoprotein function in health and disease: insights from natural mutations, Eur. J. Clin. Invest., 1996, vol. 26, no. 9, pp. 733—746.

    Article  CAS  PubMed  Google Scholar 

  42. Defesche, J.C., Gidding, S.S., Harada-Shiba, M., et al., Familial hypercholesterolaemia, Nat. Rev. Dis. Primers, 2017, vol. 3, p. 17093. https://doi.org/10.1038/nrdp.2017.93

    Article  PubMed  Google Scholar 

  43. Chen, X.Y., Li, R., Wang, M., and Geng, Z.Y., Identification of differentially expressed genes in hypothalamus of chicken during cold stress, Mol. Biol. Rep., 2014, vol. 41, no. 4, pp. 2243—2248. https://doi.org/10.1007/s11033-014-3075-z

    Article  CAS  PubMed  Google Scholar 

  44. Panin, L.E., Poteryaeva, O.N., Dobronravova, O.V., and Kolpakov, A.R., Effect of long-term cold exposure on apoprotein A-1, B, and E levels in the rat serum, Ross. Fiziol. Zh. im. I.M. Sechenova, 1999, vol. 85, no. 2, pp. 263—267.

    CAS  PubMed  Google Scholar 

  45. Bichkaeva, F.A., Kokoev, T.I., Dzhioeva, Ts.G., et al., The content of apolipoproteins A, B in the serum and the lipid metabolism parameters among residents of the subpolar regions of the North and the southern regions of the Caucasus, Klin. Lab. Diagn., 2013, no. 1, pp. 25—27.

  46. Sweeney, H.L. and Hammers, D.W., Muscle contraction, Cold Spring Harb. Perspect. Biol., 2018, vol. 10, no. 2. pii a023200. https://doi.org/10.1101/cshperspect.a023200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haman, F. and Blondin, D.P., Shivering thermogenesis in humans: origin, contribution and metabolic requirement, Temperature (Austin), 2017, vol. 4, no. 3, pp. 217—226. https://doi.org/10.1080/23328940.2017.1328999

    Article  Google Scholar 

  48. Tan, C.L. and Knight, Z.A., Regulation of body temperature by the nervous system, Neuron, 2018, vol. 98, no. 1, pp. 31—48. https://doi.org/10.1016/j.neuron.2018.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Acosta, G.B., Otero, L.M.E., and Rubio, M.C., Area-dependent changes in GABAergic function after acute and chronic cold stress, Neurosci. Lett., 1993, vol. 154, nos. 1—2, pp. 175—178.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was supported by the Russian Science Foundation grant (RSF, 19-76-20026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Larkin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudin, N., Larkin, D.M. Shared Signatures of Selection Related to Adaptation and Acclimation in Local Cattle and Sheep Breeds from Russia. Russ J Genet 55, 1008–1014 (2019). https://doi.org/10.1134/S1022795419070159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419070159

Keywords:

Navigation