Skip to main content
Log in

SWEET Uniporter Gene Family Expression Profile in the Pitcher Development in the Carnivorous Plant Nepenthes sp.

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Transcriptome analysis of leaf and pitcher at different developmental stages in the carnivorous plant Nepenthes sp. identified 20 cDNAs of the SWEET gene family encoding sugar uniporters of classes I–IV. The structure of NSWEET proteins generally corresponded to the 3-1-3 scheme typical of SWEET proteins in eukaryotes. The variability in the expression of NSWEET genes in the mature leaf and in the three stages of pitcher development indicates the possible functional diversity of these genes. It has been suggested that class I transporters (NSWEET2d, 2f, and 2h) may participate in export of sugars from the leaf to the site of pitcher meristem initiation, while proteins NSWEET1, 2a, 2k (class I), 4a, 4b, 4d (II), and 12c (III) may participate in the delivery of sugars for the primary development of the pitcher. In subsequent stages, they can be replaced by NSWEET2b, 2c, 2e, 2i, 2j (class I), 4c (II), and 12b (III), delivering hexoses and sucrose to the growing pitcher. In the fully formed pitcher, proteins NSWEET12a (III), 2g (I), and 16 (IV) can export sugars from the digestive fluid to the leaf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Lemoine, R., La Camera, S., Atanassova, R., et al., Source-to-sink transport of sugar and regulation by environmental factors, Front. Plant Sci., 2013, vol. 4, article 272. https://doi.org/10.3389/fpls.2013.00272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, L.-Q., Cheung, L.S., Feng, L., et al., Transport of sugars, Annu. Rev. Biochem., 2015, vol. 84, pp. 865—894. https://doi.org/10.1146/annurev-biochem-060614-033904

    Article  CAS  PubMed  Google Scholar 

  3. Feng, C.Y., Han, J.X., Han, X.X., and Jiang, J., Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato, Gene, 2015, vol. 573, no. 2, pp. 261—272. https://doi.org/10.1016/j.gene.2015.07.055

    Article  CAS  PubMed  Google Scholar 

  4. Eom, J.S., Chen, L.Q., Sosso, D., et al., SWEETs, transporters for intracellular and intercellular sugar translocation, Curr. Opin. Plant Biol., 2015, vol. 25, pp. 53—62. https://doi.org/10.1016/j.pbi.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  5. Hu, L.-P., Zhang, F., Song, S.-H., et al., Genome-wide identification, characterization, and expression analysis of the SWEET gene family in cucumber, J. Integr. Agric., 2017, vol. 16, no. 7, pp. 1486—1501. https://doi.org/10.1016/S2095-3119(16)61501-0

    Article  CAS  Google Scholar 

  6. Chen, L.-Q., SWEET sugar transporters for phloem transport and pathogen nutrition, New Phytol., 2014, vol. 201, no. 4, pp. 1150—1155. https://doi.org/10.1111/nph.12445

    Article  CAS  PubMed  Google Scholar 

  7. Chen, L.-Q., Hou, B.-H., Lalonde, S., et al., Sugar transporters for intercellular exchange and nutrition of pathogens, Nature, 2010, no. 468, pp. 527—532.

  8. Chen, L.-Q., Qu, X.-Q., Hou, B.-H., et al., Sucrose efflux mediated by SWEET proteins as a key step for phloem transport, Science, 2012, vol. 335, pp. 207—211. https://doi.org/10.1126/science.1213351

    Article  CAS  PubMed  Google Scholar 

  9. Yuan, M. and Wang, S., Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms, Mol. Plant, 2013, vol. 6, pp. 665—674. https://doi.org/10.1093/mp/sst035

    Article  CAS  PubMed  Google Scholar 

  10. Xuan, Y.H., Hu, Y.B., Chen, L.Q., et al., Functional role of oligomerization for bacterial and plant SWEET sugar transporter family, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, pp. E3685—E3694. https://doi.org/10.1073/pnas.1311244110

    Article  PubMed  PubMed Central  Google Scholar 

  11. Patil, G., Valliyodan, B., Deshmukh, R., et al., Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis, BMC Genomics, 2015, vol. 16, article 520. https://doi.org/10.1186/s12864-015-1730-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao, Y., Wang, Z.Y., Kumar, V., et al., Genome-wide identification of the SWEET gene family in wheat, Gene, 2018, vol. 642, pp. 284—292. https://doi.org/10.1016/j.gene.2017.11.044

    Article  CAS  PubMed  Google Scholar 

  13. Guo, C., Li, H., Xia, X., et al., Functional and evolution characterization of SWEET sugar transporters in Ananas comosus, Biochem. Biophys. Res. Commun., 2018, vol. 496, no. 2, pp. 407—414. https://doi.org/10.1016/j.bbrc.2018.01.024

    Article  CAS  PubMed  Google Scholar 

  14. Chandran, D., Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance, IUBMB Life, 2015, vol. 67, no. 7, pp. 461—471. https://doi.org/10.1002/iub.1394

    Article  CAS  PubMed  Google Scholar 

  15. Klemens, P.A., Patzke, K., Deitmer, J., et al., Over expression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis, Plant Physiol., 2013, vol. 163, pp. 1338—1352. https://doi.org/10.1104/pp.113.224972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chardon, F., Bedu, M., Calenge, F., et al., Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis, Curr. Biol., 2013, vol. 23, pp. 697—702. https://doi.org/10.1016/j.cub.2013.03.021

    Article  CAS  PubMed  Google Scholar 

  17. Guo, W.J., Nagy, R., Chen, H.Y., et al., SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves, Plant Physiol., 2014, vol. 164, pp. 777—789. https://doi.org/10.1104/pp.113.232751

    Article  CAS  PubMed  Google Scholar 

  18. Sun, M.X., Huang, X.Y., Yang, J., et al., Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage, Plant Reprod., 2013, vol. 26, pp. 83—91. https://doi.org/10.1007/s00497-012-0208-1

    Article  CAS  PubMed  Google Scholar 

  19. Lin, I.W., Sosso, D., Chen, L.-Q., et al., Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9, Nature, 2014, vol. 508, pp. 546—549.

    Article  CAS  PubMed  Google Scholar 

  20. Fukushima, K., Fang, X., Alvarez-Ponce, D., et al., Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory, Nat. Ecol. Evol., 2017, vol. 1, no. 3, article 59. https://doi.org/10.1038/s41559-016-0059

    Article  PubMed  Google Scholar 

  21. Fukushima, K., Fujita, H., Yamaguchi, T., et al., Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea, Nat. Commun., 2015, no. 6, article 6450. https://doi.org/10.1038/ncomms7450

  22. Frazier, C.K., The enduring controversies concerning the process of protein digestion in Nepenthes (Nepenthaceae), Carnivorous Plant Newslett., 2000, vol. 29, pp. 56—61.

    Google Scholar 

  23. Rottloff, S., Miguel, S., Biteau, F., et al., Proteome analysis of digestive fluids in Nepenthes pitchers, Ann. Bot., 2016, vol. 117, pp. 479—495. https://doi.org/10.1093/aob/mcw001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saganová, M., Bokor, B., Stolárik, T., and Pavlovič, A., Regulation of enzyme activities in carnivorous pitcher plants of the genus Nepenthes, Planta, 2018. https://doi.org/10.1007/s00425-018-2917-7

  25. Ravin, N.V., Gruzdev, E.V., Beletsky, A.V., et al., The loss of photosynthetic pathways in the plastid and nuclear genomes of the non-photosynthetic mycoheterotrophic eudicot Monotropa hypopitys, BMC Plant Biol., 2016, vol. 16, suppl. 3, pp. 153—161. https://doi.org/10.1186/s12870-016-0929-7

    Article  CAS  PubMed Central  Google Scholar 

  26. Bailey, T.L. and Elkan, C., Fitting a mixture model by expectation maximization to discover motifs in biopolymers, in Proc. Sec. Int. Conf. Intelligent Syst. Mol. Biol., 1994, pp. 28—36.

  27. Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, no. 7, pp. 1870—1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, L., Yao, L., Hao, X., et al., Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis, Plant Mol. Biol., 2018, vol. 96, no. 6, pp. 577—592. https://doi.org/10.1007/s11103-018-0716-y

    Article  CAS  PubMed  Google Scholar 

  29. Miguel, S., Hehn, A., and Bourgaud, F., Nepenthes: state of the art of an inspiring plant for biotechnologists, J. Biotechnol., 2018, vol. 265, pp. 109—115. https://doi.org/10.1016/j.jbiotec.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  30. Filyushin, M.A., Reshetnikova, N.M., Kochieva, E.Z., and Skryabin, K.G., Intraspecific variability of ITS sequences in the parasitic plant Monotropa hypopitys L. from the European Russian populations, Russ. J. Genet., 2015, no. 51, no. 11, pp. 1149—1152. https://doi.org/10.1134/S102279541511006X

  31. Shulga, O.A., Shchennikova, A.V., Beletsky, A.V., et al., Transcriptome-wide characterization of the MADS-box family in pinesap Monotropa hypopitys reveals flowering conservation in non-photosynthetic myco-heterotrophs, J. Plant Growth Regul., 2017. https://doi.org/10.1007/s00344-017-9772-9

  32. Shchennikova, A.V., Slugina, M.A., Beletsky, A.V., et al., The YABBY genes of leaf and leaf-like organ polarity in leafless plant Monotropa hypopitys, Int. J. Genomics, 2018, vol. 15, article ID 7203469. https://doi.org/10.1155/2018/7203469

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the experimental climate control facility (Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences).

Funding

This work was supported in part by the grant of the Russian Science Foundation (no. 14-24-00175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Filyushin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by K. Lazarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filyushin, M.A., Kochieva, E.Z., Shchennikova, A.V. et al. SWEET Uniporter Gene Family Expression Profile in the Pitcher Development in the Carnivorous Plant Nepenthes sp.. Russ J Genet 55, 692–700 (2019). https://doi.org/10.1134/S1022795419050089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795419050089

Keywords:

Navigation