Skip to main content
Log in

Anther culture as an effective tool in winter wheat (Triticum aestivum L.) breeding

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the effect of genotype and induction medium in anther culture of wheat (Triticum aestivum L.). Ten F1 winter wheat genotypes were tested in anther culture (AC) to compare the two most frequently applied induction media (W14mf and P4mf). Androgenesis was induced during the treatment of each tested genotypes and green plants were produced from them using both media. Based on statistical analysis, the genotypes significantly influenced (at the 0.001 probability level) the efficiency of AC (embryo-like structures (ELS), albinos, green plantlets and transplanted plantlets) and the media also had a significant effect on the number of ELS and albino plantlets. Both media can be used for AC in wheat doubled haploid (DH) plant production. The production of ELS and green plantlets was higher in P4mf medium (48.84 ELS/100 anthers, 4.82 green plantlets/100 anthers) than in W14mf medium (28.14 ELS/100 anthers, 4.59 green plantlets/100 anthers). However, the green plant regeneration efficiency of the microspore-derived structures was 16.9% when using W14mf medium, while this value was 9.6% in the case of ELS induced with P4mf medium. The application of W14mf medium thus proved to be time- and labour-saving medium in the large-scale production of DH wheat plants. In our experiments, 267 DH plants were produced for our winter wheat breeding program. The spontaneous rediploidization rate was 32.72%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lantos, C., Weyen, J., Orsini, J.M., et al., Efficient application of in vitro anther culture for different European winter wheat (Triticum aestivum L.) breeding programs, Plant Breed., 2013, vol. 132, pp. 149–154.

    Article  Google Scholar 

  2. Niu, Z.X., Jiang A.X., Abu Hammad, W., et al., Review of doubled haploid production in durum and common wheat through wheat × maize hybridization, Plant Breed., 2014, vol. 133, pp. 313–320.

    Article  CAS  Google Scholar 

  3. Castillo, A.M., Sanchez-Diaz, R.A., and Valles, M.P., Effect of ovary induction on bread wheat anther culture: ovary genotype and developmental stage, and candidate gene association, Front. Plant Sci., 2015, vol. 6, article number 402. doi 10.3389/fpls.2015.00402

    PubMed  Google Scholar 

  4. Asif, M., Eudes, F., Randhawa, H., et al., Induction medium osmolality improves microspore embryogenesis in wheat and triticale, In Vitro Cell Dev.-Pl., 2014, vol. 50, pp. 121–126.

    Article  CAS  Google Scholar 

  5. Ouyang, J.W., Hu, H., Chuang, C.C., and Tseng, C.C., Induction of pollen plants from anthers of Triticum aestivum L. cultured in vitro, Sci. Sin., 1973, vol. 16, pp. 79–95.

    Google Scholar 

  6. Picard, E. and De Buyser, J., Obtention de plantlets haploides de Triticum aestivum L. á partir de cultures d’anthéres in vitro, Compt. Rend. Acad. Sci. Paris, 1973, vol. 277, pp. 1463–1466.

    Google Scholar 

  7. Wang, C.C., Chu, C.C., Sun, C.S., et al., The androgenesis in wheat (Triticum aestivum L.) anthers cultured in vitro, Acta Genet. Sin., 1973, vol. 16, pp. 218–222.

    Google Scholar 

  8. Hu, D.F., Yuan, Z.D., Tang, Y.L., and Liu, J.P., “Jinghua No-1” a winter-wheat variety derived from pollen sporophyte, Sci. Sin., Ser. B: Chem. Biol. Agric. Med. Earth Sci., 1986, vol. 29, pp. 733–745.

    Google Scholar 

  9. De Buyser, J., Henry, Y., Lonnet, P., et al., Florin—a doubled haploid wheat variety developed by the anther culture method, Plant Breed., 1987, vol. 98, pp. 53–56.

    Article  Google Scholar 

  10. Pauk, J., Kertész, Z., Beke, B., et al., New winterwheat variety—“GK Délibáb” developed via combining conventional breeding and in vitro androgenesis, Cereal Res. Commun., 1995, vol. 23, pp. 251–256.

    Google Scholar 

  11. Graf, R. J., Hucl, P., Orshinsky, B.R., and Kartha, K.K., “McKenzi” hard red spring wheat, Can. J. Plant Sci., 2003, vol. 83, pp. 565–569.

  12. Sadasivaiah, R.S., Perkovic, S.M., Pearson, C., et al., Registration of “AC Andrew” wheat, Crop Sci., 2004, vol. 44, pp. 696–697.

    Article  Google Scholar 

  13. Longin, C.F.H., Mi, X., Melchinger, A.E., et al., Optimum allocation of test resources and comparison of breeding strategies for hybrid wheat, Theor. Appl. Genet., 2014, vol. 127, pp. 2117–2126.

    Article  PubMed  Google Scholar 

  14. Jia, G., Chen, P.D., Qin, G.J., et al., QTLs for Fusarium head blight response in a wheat DH population of Wangshuibai/Alondra’s’, Euphytica, 2005, vol. 146, pp. 183–191.

    Article  CAS  Google Scholar 

  15. Szabó-Hevér, Á, Lehoczki-Krsjak, S, Varga, M., et al., Differential influence of QTL linked to Fusarium head blight, Fusarium-damaged kernel, deoxynivalenol contents and associated morphological traits in a Frontanaderived population, Euphytica, 2014, vol. 200, pp. 9–26.

    Google Scholar 

  16. Cuthbert, J.L., Somers, D.J., Brule-Babel., et al., Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.), Theor. Appl. Genet., 2008, vol. 117, pp. 595–608.

    CAS  PubMed  Google Scholar 

  17. Zhang, K.P., Tian, J.C., Zhao, L., and Wang, S.S., Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat, J. Genet. Genomics, 2008, vol. 35, pp. 119–127.

    Article  CAS  PubMed  Google Scholar 

  18. Jauhar, P.P., Xu, S.S., and Baezinger, P.S., Haploidy in cultivated wheats: induction and utility in basic and applied research, Crop Sci., 2009, vol. 49, pp. 737–755.

    Article  Google Scholar 

  19. Islam, S.M.S., and Tuteja, N., Enhancement of androgenesis by abiotic stress and other pretreatments in major crop species, Plant Sci., 2012, vol. 182, pp. 134–144.

    Article  CAS  PubMed  Google Scholar 

  20. Tuvesson, S., Ljungberg, A., Johansson, N., et al., Large-scale production of wheat and triticale double haploids through the use of a single-anther culture method, Plant Breed., 2000, vol. 119, pp. 455–459.

    Article  Google Scholar 

  21. Kondic-Spika, A., Vukosavljev, M., Kobiljski, B., and Hhristov, N., Relationship among androgenetic components in wheat and their responses to the environment, J. Biol. Res.—Thessalon., 2011, vol. 16, pp. 217–223.

    Google Scholar 

  22. He, D.G., and Ouyang, J.W., Callus and plantlet formation from cultured wheat anthers different developmental stages, Plant Sci. Lett., 1984, vol. 33, pp. 71–79.

    Article  Google Scholar 

  23. Broughton, S., Ovary co-culture improves embryo and green plant production in anther culture of Australian spring wheat (Triticum aestivum L.), Plant. Cell Tiss. Org., 2008, vol. 95, pp. 185–195.

    Article  Google Scholar 

  24. Redha, A., and Talaat, A., Improvement of green plant regeneration by manipulation of anther culture induction medium of hexaploid wheat, Plant Cell Tiss. Org., 2008, vol. 92, pp. 141–146.

    Article  Google Scholar 

  25. Redha, A. and Suleman, P., Effects of exogenous application of polyamines on wheat anther cultures, Plant Cell Tiss. Org., 2011, vol. 105, pp. 345–353.

    Article  CAS  Google Scholar 

  26. Rubtsova, M., Gnad, H., Melzer M., et al., The auxins centrophenoxine and 2,4-D differ in their effects on non-directly induced chromosome doubling in anther culture, Plant Biotechnol. Rep., 2013, vol. 7, pp. 247–255.

    Article  Google Scholar 

  27. Zur, I., Dubas, E., Krzewska, M., and Franciszek, J., Current insights into hormonal regulation of microspore embryogenesis, Front. Plant Sci., 2015, vol. 6, article number 424. doi 10.3389/fpls.2015.00424

    PubMed  PubMed Central  Google Scholar 

  28. Pauk, J., Mihály, R., Puolimatka, M., Protocol of wheat (Triticum aestivum L.) anther culture, Doubled Haploid Production in Crop Plants, a Manual, Maluszynski, M., Kasha, K.J., Forster, B.P. and Szarejko, I., Eds., Dordrecht: Kluwer, 2003, pp. 59–64.

  29. Ouyang, J.W., Jia, S.E., Zhang, C., et al., A new synthetic medium (W14) for wheat anther culture, Annual Report, Institute of Genetics, Beijing: Academia Sinica, 1989, pp. 91–92.

    Google Scholar 

  30. Barnabás, B., Protocol for producing doubled haploid plants from anther culture of wheat (Triticum aestivum L.), in Doubled Haploid Production in Crop Plants, a Manual, Maluszynski, M., Kasha, K.J., Forster, B.P. and Szarejko, I., Eds., Dordrecht: Kluwer, 2003, pp. 65–70.

    Chapter  Google Scholar 

  31. Soriano, M., Cistué, L., Castillo, A.M., Enhanced induction of microspore embryogenesis after n-butanol treatment in wheat (Triticum aestivum L.) anther culture, Plant Cell Rep., 2008, vol. 27, pp. 805–811.

    Article  CAS  PubMed  Google Scholar 

  32. Broughton, S., The application of n-butanol improves embryo and green plant production in anther culture of Australian wheat (Triticum aestivum L.) genotypes, Crop Pasture Sci., 2011, vol. 62, pp. 813–822.

    Article  CAS  Google Scholar 

  33. Lantos, C., Bóna, L., Boda, K., Pauk, J., Comparative analysis of in vitro anther- and isolated microspore culture in hexaploid Triticale (×Triticosecale Wittmack) for androgenic parameters, Euphytica, 2014, vol. 197, pp. 27–37.

    Article  CAS  Google Scholar 

  34. Rather, S.A., Chaudhary, H.K., and Kaila, V., Proportional contribution and potential of maternal and paternal genotypes for polyhaploid induction in wheat x Imperata cylindrical chromosome elimination approach, Cereal Res. Commun., 2014, vol. 42, pp. 19–26.

    Article  Google Scholar 

  35. Dunwell, J.M., Haploids in flowering plants: origin and exploitations, Plant Biotechnol. J., 2010, vol. 8, pp. 1711–1726.

    Article  Google Scholar 

  36. Oleszczuk, S., and Lukaszewsky, A.J., The origin of unusual chromosome constitutions among newly formed allopolyploids, Am. J. Bot., 2014, vol. 101, pp. 318–326.

    Article  PubMed  Google Scholar 

  37. Ganeva, G., Landjeva, S., Belchev, I., and Koleva, L., Characterization of two wheat doubled haploid populations for resistance to common bunt and its association with agronomic traits, Cereal Res. Commun., 2014, vol. 42, pp. 484–494.

    Article  Google Scholar 

  38. Ouyang, J.W., Liang, H., Jia, S., et al., Studies on the chromosome doubling of wheat pollen plants, Plant Sci., 1994, vol. 98, pp. 209–214.

    Article  CAS  Google Scholar 

  39. Soriano, M., Cistué, L., Vallés, M.P., and Castillo, A.M., Effects of colchicine on anther and microspore culture of bread wheat (Triticum aestivum L.), Plant Cell Tiss. Org., 2007, vol. 91, pp. 225–234.

    Article  CAS  Google Scholar 

  40. Weyen, J., Barley and wheat doubled haploids in breeding., in Advances in Haploid Production in Higher Plants, Touraev, A., Forster, B.P., and Mohan Jain, S., Eds., Dordrecht: Springer Science + Business Media B.V., 2009, pp. 179–187.

    Chapter  Google Scholar 

  41. Barnabás, B., Pfahler, P.L., and Kovács, G., Direct effect of colchicine on the microspore embryogenesis to produce dihaploid plants in wheat (Triticum aestivum L.), Theor. Appl. Genet., 1991, vol. 81, pp. 675–678.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pauk.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lantos, C., Pauk, J. Anther culture as an effective tool in winter wheat (Triticum aestivum L.) breeding. Russ J Genet 52, 794–801 (2016). https://doi.org/10.1134/S102279541608007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541608007X

Keywords

Navigation