Skip to main content

Advertisement

Log in

Assessment of DNA methylation changes in tissue culture of Brassica napus

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Plant tissue culture, as a fundamental technique for genetic engineering, has great potential of epigenetic variation, of which DNA methylation is well known of importance to genome activity. We assessed DNA methylation level of explants during tissue culture of Brassica napus (cv. Yangyou 9), using high-performance liquid chromatography (HPLC) assisted quantification. By detecting methylation levels in hypocotyls cultured in mediums with different concentrations of hormones, we found dissected tissue cultured with 0.1 mg/L 2,4-D and 1.0 mg/L 6-BA, presented the lowest methylation level and highest induction rate of callus (91.0%). Different time point of cultured explants also showed obvious methylation variations, explants cultured after 6 and 21 days exhibited methylation ratios of 4.33 and 8.07%, respectively. Whereas, the methylation ratio raised to 38.7% after 30 days cultivation, indicating that methylation level of hypocotyls ranged during tissue culture. Moreover, we observed that the methylation level in callus is the highest during regeneration of rapeseed, following the regenerated plantlets and hypocotyls. This paper indicated the function of hormones and differentiation of callus is relevant to the methylation levels during tissue culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chinnusamy, V. and Zhu, J.K., Epigenetic regulation of stress responses in plants, Curr. Opin. Plant Biol., 2009, vol. 12, pp.133–139.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Bond, D.M. and Finnegan, E.J., Passing the message on: inheritance of epigenetic traits, Trends Plant Sci., 2007, vol. 12, pp. 211–216.

    Article  CAS  PubMed  Google Scholar 

  3. Grativol, C., Hemerly, A.S., and Ferreira, P.C.G., Genetic and epigenetic regulation of stress responses in natural plant populations, BBA-Gene Regul. Mech., 2012, vol. 1819, pp. 176–185.

    CAS  Google Scholar 

  4. Becker, C. and Weigel, D., Epigenetic variation: origin and transgenerational inheritance, Plant Biol., 2012, vol. 15, pp. 562–567.

    CAS  Google Scholar 

  5. Dowen, R.H., Pelizzola, M., Schmitz, R.J., et al., Widespread dynamic DNA methylation in response to biotic stress, Plant Biol., 2012, vol. 109, pp. 2183–2191.

    Google Scholar 

  6. Gutzat, R. and Scheid, O.M., Epigenetic responses to stress: triple defense, Plant Biol., 2012, vol. 15, pp. 568–573.

    CAS  Google Scholar 

  7. Sahu, P.P., Pandey, G., Sharma, N., et al., Epigenetic mechanisms of plant stress responses and an adaptation, Plant Cell Rep., 2013, vol. 32, pp. 1151–1159.

    Article  CAS  PubMed  Google Scholar 

  8. Bird, A., DNA methylation patterns and epigenetic memory, Genes Dev., 2002, vol. 16, pp. 6–21.

    Article  CAS  PubMed  Google Scholar 

  9. Lukens, L.N. and Zhan, S.H., The plant genome’s methylation status and response to stress: implications for plant improvement, Curr. Opin. Plant Biol., 2007, vol. 10, pp. 317–322.

    Article  CAS  PubMed  Google Scholar 

  10. Miguel, C. and Marum, L., An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond, J. Exp. Bot., 2011, vol. 62, pp. 3713–3725.

    Article  CAS  PubMed  Google Scholar 

  11. Cao, X., Aufsatz, W., Zilberman, D., et al., Role of DRM and CMT3 methyltransferases in RNA directed DNA methylation, Curr. Biol., 2003, vol. 13, pp. 2212–2217.

    Article  CAS  PubMed  Google Scholar 

  12. Brzeski, J. and Jerzmanowski, A., Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors, J. Biol. Chem., 2003, vol. 278, pp. 823–828.

    Article  CAS  PubMed  Google Scholar 

  13. Chan, S.W., Henderson, I., and Jacobsen, S.E., Gardening the genome: DNA methylation in Arabidopsis thaliana, Nat. Rev. Genet., 2005, vol. 6, pp. 351–360.

    Article  CAS  PubMed  Google Scholar 

  14. Xu, M.L., Li, X.Q., and Korban, S.S., DNA-methylation alterations and exchanges during in vitro cellular differentiation in rose (Rosa hybrida L.), Theor. Appl. Genet., 2004, vol. 109, pp. 899–910.

    Article  CAS  PubMed  Google Scholar 

  15. Valledor, L., Hasbun, R., and Meijon, M., Involvement of DNA methylation in tree development and micropropagation, Plant Cell Tiss. Org. Cult., 2006, vol. 91, pp. 75–86.

    Article  Google Scholar 

  16. Vanyushin, B.F., DNA methylation and epigenetics, Russ. J. Genet., 2006, vol. 42, pp. 1186–1199.

    Article  Google Scholar 

  17. Meilinger, D., Fellinger, K., and Bultlnann, S., Np95 interacts with de novo DNA methyltransferases, Dnmt3a and Dnmt3b, and mediates epigenetic silencing of the viral CMV promoter in embryonic stem cells, EMBO Rep., 2009, vol. 10, pp. 1259–1264.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wang, Q.M. and Wang, L., An evolutionary view of plant tissue culture: somaclonal variation and selection, Plant Cell Rep., 2012, vol. 31, pp. 1535–1547.

    Article  CAS  PubMed  Google Scholar 

  19. Steward, N., Kusano, T., and Sano, H., Expression of ZmMET1, a gene encoding a DNA methyltransferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells, Nucleic Acids Res., 2000, vol. 28, pp. 3250–3259.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bardini, M., Labra, M., Winfild, M., et al., Antibiotic-induced DNA methylation changes in calluses of Arabidopsis thaliana, Plant Cell Tiss. Org. Cult., 2003, vol. 72, pp. 157–162.

    Article  CAS  Google Scholar 

  21. Trejgell, A., Dabrowska, G., and Tretyn, A., In vitro regeneration of Carlina acaulis subsp. simplex from seedling explants, Acta Physiol. Plant., 2009, vol. 31, pp. 445–453.

    Article  Google Scholar 

  22. Rival, A., Ilbert, P., Labeyrie, A., et al., Variations in genomic DNA methylation during the long-term in vitro proliferation of oil palm embryogenic suspension cultures. Plant Cell Rep., 2012, vol. 32, pp. 359–368.

    Article  PubMed  Google Scholar 

  23. Peraza-Echeverria, S., Herrera-Valencia, V.A., and James-Kay, A., Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP), Plant Sci., 2001, vol. 161, pp. 359–367.

    Article  CAS  PubMed  Google Scholar 

  24. Schellenbaum, P., Mohler, V., Wenzel, G., et al., Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L.), BMC Plant Biol., 2008, vol. 8, p. 78.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Wang, X., Wu, R., Lin, X., et al., Tissue cultureinduced genetic and epigenetic alterations in rice purelines, F1 hybrids and polyploids, BMC Plant Biol., 2013, vol. 13, p. 77.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Fan, Y., Du, K., Gao, Y., et al., Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum, Russ. J. Genet., 2013, vol. 49, pp. 439–447.

    Article  CAS  Google Scholar 

  27. Lopez, C.M.R., Wetten, A.C., and Wilkinson, M.J., Progressive erosion of genetic and epigenetic variation in callus-derived cocoa (Theobroma cacao) plants, New Phytol., 2010, vol. 186, pp. 856–868.

    Article  Google Scholar 

  28. Doyle, J.J. and Doyle, J.L., Isolation of plant DNA from fresh tissue, Focus, 1990, vol. 12, pp. 13–15.

    Google Scholar 

  29. Demeulemeester, M.A.C., Van Stallen, N., and De Proft, M.P., Degree of DNA methylation in chicory (Cichorium intybus L.): infuence of plant age and vernalization, Plant Sci., 1999, vol. 142, pp. 101–108.

    Article  CAS  Google Scholar 

  30. Bird, A., Perceptions of epigenetics, Nature, 2007, vol. 447, pp. 396–398.

    Article  CAS  PubMed  Google Scholar 

  31. Huang, H., Han, S.S., Wang, Y., et al., Variations in leaf morphology and DNA methylation following in vitro culture of Malus xiaojinensis, Plant Cell Tiss. Organ Cult., 2012, vol. 111, pp. 153–161.

    Article  CAS  Google Scholar 

  32. Rao, A.Q., Bakhsh, A., Kiani, S., et al., The myth of plant transformation, Biotechnol. Adv., 2009, vol. 27, pp. 753–763.

    Article  PubMed  Google Scholar 

  33. Neelakandan, A.K. and Wang, K., Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications, Plant Cell Rep., 2012, vol. 31, pp. 597–620.

    Article  CAS  PubMed  Google Scholar 

  34. Loschiavo, F., Pitto, L., and Giulilano, G., DNA methylation of embryogenic carrot cell culture and its variation as caused by mutation, differentiation, hormones and hypomethylating drugs, Theor. Appl. Genet., 1989, vol. 77, pp. 325–331.

    Article  CAS  PubMed  Google Scholar 

  35. Fraga, M.F., Canal, M.J., and Rodriguez, R., In vitro morphogenic potential of differently aged Pinus radiata trees correlates with polyamines and DNA methylation levels, Plant Cell Tiss. Org. Cult., 2002, vol. 70, pp. 139–145.

    Article  CAS  Google Scholar 

  36. Kaeppler, M.S., Kaeppler, H.F., and Yong, R., Epigenetic aspects of somaclonal variation in plants, Plant Mol. Biol., 2000, vol. 43, pp. 179–188.

    Article  CAS  PubMed  Google Scholar 

  37. Stroud, H., Ding, B., Simon, S.A., et al., Plants regenerated from tissue culture contain stable epigenome changes in rice, eLife, 2013, vol. 2. e00354

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Wang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Ran, L., Kong, Y. et al. Assessment of DNA methylation changes in tissue culture of Brassica napus . Russ J Genet 50, 1186–1191 (2014). https://doi.org/10.1134/S1022795414100032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795414100032

Keywords

Navigation