Skip to main content
Log in

The transcriptome analysis of barley (Hordeum vulgare L.) using the Affymetrix Barley1 GeneChip

  • Experimental Articles
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

An alternative to complete genome sequencing is development and analysis of ESTs—fragments of transcribed coding DNA sequences. The EST collections also enhanced the development of cDNA microarray technologies, which make possible assessing the transcription levels of several thousand genes in a studied tissue of an organism in the same experiment. This paper provides an overview of the results of experiments with a barley microarray, Affymetrix Barley1 GeneChip. The variation in transcription levels of over 22000 genes in germinating barley grain of 150 barley double haploid lines produced by crossing cultivars Steptoe and Morex. Variation in gene expression of each gene is a quantitative trait, which can be mapped in population of double haploids as the genetic loci determining its variation (expressed QTL or eQTL). A regulatory locus (eQTL) can colocalize with the corresponding gene on genetic map (cis-eQTL) or be distant from it, frequently on another chromosome (trans-eQTL). Thus, it is possible to detect and analyze cis- and trans-regulatory loci for genes on a genome-wide scale. The design of the Affymetrix oligonucleotide arrays makes it possible not only to concurrently test the transcription level of several thousand genes, but also to simultaneously detect the polymorphic regions in cDNA sequences, thereby finding a considerable fraction of all nucleotide substitutions between the compared genotypes. Two types of data (the expression levels of several thousand genes and the presence of polymorphic sites in their sequences) can be obtained concurrently when processing the results of the same experiment. The details of both procedures are illustrated with explanatory examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michalek, W., Weschke, W., Pleissner, K.P., and Graner, A., EST Analysis in Barley Defines a Unigene Set Comprising 4.000 Genes, Theor. Appl. Genet., 2002, vol. 104, no. 1, pp. 97–103.

    Article  PubMed  Google Scholar 

  2. Zhang, H., Sreenivasulu, N., Weschke, W., et al., Large-Scale Analysis of the Barley Transcriptome Based on Expressed Sequence Tags, Plant J., 2004, vol. 40, pp. 276–290.

    Article  PubMed  Google Scholar 

  3. Mergaert, P., Gamas, P., and Becker, A., Transcriptome Analysis, EMBO Practical Course on the New Plant Model System Medicago truncatula: Manuals. Module, 2001.

  4. Rensink, W.A. and Buell, C.R., Microarray Expression Profiling Resources for Plant Genomics, Trends Plant Sci., 2005, vol. 10, pp. 603–609.

    Article  CAS  PubMed  Google Scholar 

  5. Kane, M.D., Jatkoe, T.A., Stumpf, C.R., et al., Assessment of the Sensitivity and Specificity of Oligonucleotide (50mer) Microarrays, Nucleic Acids Res., 2000, vol. 28, pp. 4552–4557.

    Article  CAS  PubMed  Google Scholar 

  6. Richmond, T. and Somerville, S.C., Chasing the Dream: Plant EST Microarrays, Curr. Opin. Plant Biol., 2000, vol. 3, pp. 108–116.

    Article  CAS  PubMed  Google Scholar 

  7. Lockhart, D.J. and Winzeler, E.A., Genomics, Gene Expression and DNA Arrays, Nature, 2000, vol. 405, no. 6788, pp. 827–836.

    Article  CAS  PubMed  Google Scholar 

  8. Close, T.J., Wanamaker, S.I., Caldo, R.A., et al., A New Resource for Cereal Genomics: 22K Barley GeneChip Comes of Age, Plant Physiol., 2004, vol. 134, pp. 960–968.

    Article  CAS  PubMed  Google Scholar 

  9. Jansen, R.A. and Nap, J.P., Genetical Genomics: The Added Value from Segregation, Trends Genet., 2001, vol. 17, pp. 388–391.

    Article  CAS  PubMed  Google Scholar 

  10. Gupta, P.K. and Rustgi, S., Molecular Markers from the Transcribed Expressed Region of the Genome in Higher Plants, Funct. Integr. Genomics, 2004, vol. 4, no. 3, pp. 139–162.

    Article  CAS  PubMed  Google Scholar 

  11. Brem, R.B., Yvert, G., Clinton, R., and Kruglyak, L., Genetic Dissection of Transcriptional Regulation in Budding Yeast, Science, 2002, vol. 296, pp. 752–755.

    Article  CAS  PubMed  Google Scholar 

  12. Schadt, E.E., Monks, S.A., Drake, T.A., et al., Genetics of Gene Expression Surveyed in Maize, Mouse and Man, Nature, 2003, vol. 422, no. 6929, pp. 297–302.

    Article  CAS  PubMed  Google Scholar 

  13. Darvasi, A., Genomics: Gene Expression Meets Genetics, Nature, 2003, vol. 422, no. 6929, pp. 269–270.

    Article  CAS  PubMed  Google Scholar 

  14. DeCook, R., Lall, S., Nettleton, D., and Howell, S.H., Genetic Regulation of Gene Expression during Shoot Development in Arabidopsis, Genetics, 2006, vol. 172, no. 2, pp. 1155–1164.

    Article  CAS  PubMed  Google Scholar 

  15. West, M.A., Kim, K., Kliebenstein, A., et al., Global eQTL Mapping Reveals the Complex Genetic Architecture of Transcript Level Variation in Arabidopsis, Genetics, 2007, vol. 175, pp. 1441–1450.

    Article  CAS  PubMed  Google Scholar 

  16. Jordan, M., Somers, D.J., and Banks, T.W., Identifying Regions of the Wheat Genome Controlling Seed Development by Mapping Expression Quantitative Trait Loci, Plant Biotechnol. J., 2007, vol. 5, pp. 442–453.

    Article  CAS  PubMed  Google Scholar 

  17. Luo, Z.W., Potokina, E., Druka, A., et al., Robust, High Density Genotyping from Gene-Expression Data in Species with Un-Sequenced Genomes, Genetics, 2007, vol. 176, pp. 789–800.

    Article  CAS  PubMed  Google Scholar 

  18. Potokina, E., Druka, A., Luo, Z., et al., Gene Expression Quantitative Trait Locus Analysis of 16.000 Barley Genes Reveals a Complex Pattern of Genome Wide Transcriptional Regulation, Plant J., 2008, vol. 53, pp. 90–101.

    Article  CAS  PubMed  Google Scholar 

  19. Potokina, E., Druka, A., Luo, Z., et al., Tissue Dependent Limited Pleiotropy Affects Gene Expression in Barley. Plant J., 2008, vol. 56, pp. 287–296.

    Article  CAS  PubMed  Google Scholar 

  20. Kleinhofs, A., Kilian, A., Saghai, M., et al., A Molecular, Isozyme and Morphological Map of the Barley (Hordeum vulgare) Genome, Theor. Appl. Genet., 1993, vol. 86, pp. 705–712.

    Article  CAS  Google Scholar 

  21. Rostoks, N., Borevitz, J.O., Hedley, P.E., et al., Single-Feature Polymorphism Discovery in the Barley Transcriptome, Genome Biol., 2005, vol. 6, p. R54.

  22. Ronald, J., Akey, J.M., Whittle, J., et al., Simultaneous Genotyping Gene-Expression Measurement and Detection of Allele-Specific Expression with Oligonucleotide Arrays, Genome Res., 2005, vol. 15, pp. 284–291.

    Article  CAS  PubMed  Google Scholar 

  23. West, M.A., van Leeuwen, H., Kozik, A., et al., High-Density Haplotyping with Microarray Based Expression and Single Feature Polymorphism Markers in Arabidopsis, Genome Res., 2006, vol. 16, pp. 787–795.

    CAS  Google Scholar 

  24. Cui, X., Xu, J., Asghar, R., et al., Detecting Single-Feature Polymorphisms Using Oligonucleotide Arrays and Robustified Projection Pursuit, Bioinformatics, 2005, vol. 21, pp. 3852–3858.

    Article  CAS  PubMed  Google Scholar 

  25. Zeng, Z.B., Theoretical Basis for Separation of Multiple Linked Gene Effect in Mapping Quantitative Trait Loci, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 10972–10976.

    Article  CAS  PubMed  Google Scholar 

  26. Rostoks, N. and Ramsay, L., MacKenzie K. Et Al. Recent History of Artificial Outcrossing Facilitates Whole-Genome Association Mapping in Elite Inbred Crop Varieties, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, pp. 18656–18661.

    Article  CAS  PubMed  Google Scholar 

  27. Gvozdev, V.A., Mechanisms of Gene Activity Regulation during Transcription, Sorosovskii Obrazovatel’nyi Zh., 1996, no. 2, pp. 22–31.

  28. Kota, R., Wolf, M., Michalek, W., and Graner, A., Application of Denaturing High-Performance Liquid Chromatography for Mapping of Single Nucleotide Polymorphisms in Barley (Hordeum vulgare L.), Genome, 2001, vol. 44, pp. 1–6.

    Article  Google Scholar 

  29. Stern, D.L., Evolutionary Developmental Biology and the Problem of Variation, Evolution, 2000, vol. 54, pp. 1079–1091.

    CAS  PubMed  Google Scholar 

  30. Wray, G.A., The Evolutionary Significance of cis-Regulatory Mutations, Nat. Rev. Genet., 2007, vol. 8, no. 3, pp. 206–216.

    Article  CAS  PubMed  Google Scholar 

  31. Carroll, S.B., Evolution at Two Levels: On Genes and Form, PLoS Biol., 2005, vol. 3, no. 7, p. e245.

    Article  PubMed  CAS  Google Scholar 

  32. Ruse, C.E., Parker, S.G., Molecular Genetics and Age-Related Disease, Age Ageing, 2001, vol. 30, pp. 449–454.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Potokina.

Additional information

Original Russian Text © E.K. Potokina, A. Druka, Z. Luo, R. Waugh, M.J. Kearsey, 2009, published in Genetika, 2009, Vol. 45, No. 11, pp. 1493–1505.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potokina, E.K., Druka, A., Luo, Z. et al. The transcriptome analysis of barley (Hordeum vulgare L.) using the Affymetrix Barley1 GeneChip. Russ J Genet 45, 1317–1328 (2009). https://doi.org/10.1134/S1022795409110064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795409110064

Keywords

Navigation