Skip to main content
Log in

Search for destruction factors of bacterial biofilms: Comparison of phage properties in a group of Pseudomonas putida bacteriophages and specificity of their halo-formation products

  • Genetics of Microorganisms
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Comparison of Pseudomonas putida group of phages attributed to five species (af, ϕ15, ϕ27, ϕ2F, and pf16) with their common property of halo-formation (formation of lightening zones) around phage plaques was conducted. The halo around phage plaques appears as a result of reduction or disappearance of bacterial polysaccharide capsules. The concentration of viable bacteria remains unchanged within the halo. A comparison of specificities of halo-formation products from various phages was conducted by a simple method. These products were shown to be highly specific and inactive on other species of pseudomonads. Phage-resistant P. putida mutants scored with respect to various phages, which lost phage adsorption ability, were tolerant to the effect of halo-formation products in most cases. Apparently, the capsular polysaccharides, which serve as a substrate for depolymerases and are the primary phage receptors, may be often lost. Results of partial sequencing of the af phage genome revealed an open reading frame that encodes the enzyme transglycosylase similar rather to transglycosylases of oligotrophic bacteria belonging to different species than to lysozymes of other phages. Possibly, it is a polyfunctional enzyme combining functions of lysozyme and an enzyme that executes the penetration of phage particle across extracellular slime and capsule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, W.S., van de Mortel, M., Nielsen, L., et al., Alginate Production by Pseudomonas putida Creates a Hydrated Microenvironment and Contributes to Biofilm Architecture and Stress Tolerance under Water-Limiting Conditions, J. Bacteriol., 2007, no. 189(22), pp. 8290–8299.

    Article  PubMed  CAS  Google Scholar 

  2. Khiyami, M.A., Pometto Lii, A.L., and Drown, R.C., Detoxification of Corn Stover and Corn Starch Pyrolysis Liquors by Pseudomonas putida and Streptomyces setonii Suspended Cells and Plastic Compost Support Biofilms, J. Agric. Food Chem., 2005, vol. 20, no. 53(8), pp. 2978–2987.

    Article  CAS  Google Scholar 

  3. Rodrigues, A.C., Wuertz, S., Brito, A.G., and Melj, L.F., Fluorene and Phenanthrene Uptake by Pseudomonas putida ATCC 17514: Kinetics and Physiological Aspects, Biotechnol. Bioeng., 2005, vol. 5, no. 90(3), pp. 281–289.

    Article  CAS  Google Scholar 

  4. Otto, M., Bacterial Evasion of Antimicrobial Peptides by Biofilm Formation, Curr. Top. Microbiol. Immunol., 2006, vol. 306, pp. 251–258.

    Article  PubMed  CAS  Google Scholar 

  5. Mushtaq, N., Redpath, M.B., Luzio, J.P., and Taylor, P.W., Treatment of Experimental Escherichia coli Infection with Recombinant Bacteriophage-Derived Capsule Depolymerase, J. Antimicrob. Chemother., 2005, vol. 56, no. (1), pp. 160–165.

    Article  PubMed  CAS  Google Scholar 

  6. Mushtaq, N., Redpath, M.B., Luzio, J.P., and Taylor, P.V., Prevention and Cure of Systemic Escherichia coli K1 Infection by Modification of the Bacterial Phenotype, Antimicrob. Agents Chemother., 2004, vol. 48, no. (5), pp. 1503–1508.

    Article  PubMed  CAS  Google Scholar 

  7. Malnoy, M., Faize, M., Venisse, J.S., et al., Expression of Viral EPS-Depolymerase Reduces Fire Blight Susceptibility in Transgenic Pear, Plant Cell Rep., 2005, vol. 23, no. (9), pp. 632–663.

    Article  PubMed  CAS  Google Scholar 

  8. Kim, W.S., Schollmeyer, M., Nimtz, M. et al., Genetics of Biosynthesis and Structure of the Capsular Exopolysaccharide from the Asian Pear Pathogen Erwinia pyrifoliae, Microbiology, 2002, vol. 148(Pt 12), pp. 4015–4024.

    PubMed  CAS  Google Scholar 

  9. Alkawash, M.A., Soothill, J.S., and Schiller, N.L., Alginate Lyase Enhances Antibiotic Killing of Mucoid Pseudomonas aeruginosa in Biofilms, APMIS, 2006, vol. 114, no. 2, pp. 131–138.

    Article  PubMed  CAS  Google Scholar 

  10. Baker, J.R., Dong, S., and Pritchard, D.G., The Hyaluronan Lyase of Streptococcus pyogenes Bacteriophage H4489A, Biochem. J., 2002, vol. 1, no. 365, pp. 317–322.

    Article  Google Scholar 

  11. Linnerborg, M., Weintraub, A., Albert, M.J., and Widmalm, G., Depolymerization of the Capsular Polysaccharide from Vibrio cholerae O139 by a Lyase Associated with the Bacteriophage JA1, Carbohydr. Res., 2001, vol. 19, no. 333(4), pp. 263–269.

    Article  Google Scholar 

  12. Scholl, D., Rogers, S., Adhya, S., and Merril, C.R., Bacteriophage K1-5 Encodes Two Different Tail Fiber Proteins, Allowing It to Infect and Replicate on Both K1 and K5 Strains of Escherichia coli, J. Virol., 2001, vol. 75, no. 6, pp. 2509–2515.

    Article  PubMed  CAS  Google Scholar 

  13. Clarke, B.R., Esumeh, F., and Roberts, I.S., Cloning, Expression, and Purification of the K5 Capsular Polysaccharide Lyase (KflA) from Coliphage K5A: Evidence for Two Distinct K5 Lyase Enzymes, J. Bacteriol., 2000, vol. 182, no. 13, pp. 3761–3766.

    Article  PubMed  CAS  Google Scholar 

  14. Nimmich, W., Schmidt, G., and Krallmann-Wenzel, U., Two Different Pseudomonas aeruginosa Capsular Polysaccharide Depolymerases Each Associated with One of the Coliphage phi K5 and phi K20, FEMS Microbiol. Lett., 1991, vol. 1, no. 66(2), pp. 137–141.

    Google Scholar 

  15. Rieger-Hug, D. and Stirm, S., Comparative Study of Host Capsule Depolymerases Associated with Klebsiella Bacteriophages, Virology, 1981, vol. 113, no. 1, pp. 363–378.

    Article  PubMed  CAS  Google Scholar 

  16. Chakrabarty, A.M., Niblack, J.F., and Guansalus, I.C., Phage Initiated Polysaccaride Depolymerase in Pseudomonas putida, Virology, 1967, vol. 32, pp. 532–534.

    Article  PubMed  CAS  Google Scholar 

  17. Bartell, P.F. and Orr, T.E., Distinct Slime Polysaccharide Depolymerases of Bacteriophage-Infected Pseudomonas aeruginosa: Evidence of Close Association with the Structured Bacteriophage Particle, J. Virol., 1969, vol. 4, no. 5, pp. 580–584.

    PubMed  CAS  Google Scholar 

  18. Castillo, F.J. and Bartell, P.F., Localization and Functional Role of the Pseudomonas Bacteriophage 2 Depolymerase, J. Virol., 1976, vol. 18, no. 2, pp. 701–708.

    PubMed  CAS  Google Scholar 

  19. Suda, K., Tanji, Y., Hori, K., and Unno, H., Evidence for a Novel Chlorella Virus-Encoded Alginate Lyase, FEMS Microbiol. Lett., 1999, vol. 1, no. 180(1), pp. 45–53.

    Article  Google Scholar 

  20. Davidson, I.W., Lawson, C.J., and Sutherland, I.W., An Alginate Lysate from Azotobacter vinelandii Phage, J. Gen. Microbiol., 1977, vol. 98, no. 1, pp. 223–229.

    PubMed  CAS  Google Scholar 

  21. Kwiatkowski, B., Bosebek., Thiele, H., Stirm, S., Substrate Specificity of Two Bacteriophage-Associated Endo-N-Acetylneuraminidases, J. Virol., 1983, vol. 45, no. 1, pp. 367–374.

    PubMed  CAS  Google Scholar 

  22. Hughes, K.A., Sutherland, I.W., Clark, J., and Jones, M.V., Bacteriophage and Associated Polysaccharide Depolymerases—Novel Tools for Study of Bacterial Biofilms, J. Appl. Microbiol., 1998, vol. 85, no. 3, pp. 583–590.

    Article  PubMed  CAS  Google Scholar 

  23. Krylov, V.N., Dzhusupova, A.B., Akhverdyan, V.Z., et al., Study of Morphology and Genome Structure of Pseudomonas putida Bacteriophages for their Classification, Genetika (Moscow), 1989, vol. 25, no. 9, pp. 1559–1570.

    PubMed  CAS  Google Scholar 

  24. Miller, J.H., Experiments in Molecular Genetics, New York: Cold Spring Harbor Lab., 1972.

    Google Scholar 

  25. Adams, M.H. Bacteriophages, New York: Interscience, 1959.

    Google Scholar 

  26. Sambrook, J., Fritsch, D.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  27. Krylov, V.N., Smirnova, T.A., Minenkova, I.B., et al., Pseudomonas Bacteriophage phiKZ Contains an Inner Body in Its Capsid, Can. J. Microbiol., 1984, vol. 30, pp. 758–762.

    Article  PubMed  CAS  Google Scholar 

  28. Lebedeva, M.N., Rukovodstvo k prakticheskim zanyatiyam po meditsinskoi mikrobiologii (Manual of Practical Medical Microbiology), Moscow: Meditsina, 1973.

    Google Scholar 

  29. Kropinski, A.M., Kovalyova, I.V., Billington, S.J., et al., The Genome of Epsilon15, a Serotype-Converting, Group E1 Salmonella enterica—Specific Bacteriophage, Virology, 2007, vol. 20, no. 369(2), pp. 234–244.

    Article  CAS  Google Scholar 

  30. Matallana-Surget, S., Joux, F., Lebaron, P., and Cavicchioli, R., Isolation and Characterization of Marine Oligotrophic Bacteria, J. Soc. Biol., 2007, vol. 201, no. 1, pp. 41–50.

    Article  PubMed  Google Scholar 

  31. Strömpl, C., Hold, G.L., Lünsdorf, H., et al., Oceanicaulis alexandrii gen. nov., sp. nov., a Novel Stalked Bacterium Isolated from a Culture of the Dinoflagellate Alexandrium tamarense (Lebour) Balech, Int. J. Syst. Evol. Microbiol., 2003, vol. 53(pt 6), pp. 1901–1906.

    Article  PubMed  CAS  Google Scholar 

  32. Ivanova, E.P., Gorshkova, N.M., Sawabe, T., et al., Sulfitobacter delicates sp. nov. and Sulfitobacter dubius sp. nov., Respectively from a Starfish (Stellaster equestris) and Sea Grass (Zostera marina), Int. J. Syst. Evol. Microbiol., 2004, vol. 54(pt 2), pp. 1901–1906..

    Google Scholar 

  33. Williams, P., Quorum Sensing, Communication and Cross-Kingdom Signalling in the Bacterial World, Microbiology, 2007, vol. 153(pt 12), pp. 475–480.

    Google Scholar 

  34. Lavigne, R., Burkaltseva, M.V., Robben, J., et al., The Genome of Bacteriophage phiKMV, a T7-Like Virus Infecting Pseudomonas aeruginosa, Virology, 2003, vol. 20, no. 312(1), pp. 49–59.

    Article  CAS  Google Scholar 

  35. Mesyanzhinov, V.V., Robben, J., Grymonprez, B., et al., The Genome of Bacteriophage phiKZ of Pseudomonas aeruginosa, J. Mol. Biol., 2002, vol. 15, no. 317(1), pp. 1–19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Krylov.

Additional information

Original Russian Text © O.V. Shaburova, S.V. Krylov, V.P. Veiko, E.A. Pleteneva, M.V. Burkal’tseva, K.A. Miroshnikov, A. Cornelissen, R. Lavigne, N.N. Sykilinda, V.A. Kadykov, V.V. Mesyanzhinov, G. Volckaert, V.N. Krylov, 2009, published in Genetika, 2009, Vol. 45, No. 2, pp. 185–195.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaburova, O.V., Krylov, S.V., Veiko, V.P. et al. Search for destruction factors of bacterial biofilms: Comparison of phage properties in a group of Pseudomonas putida bacteriophages and specificity of their halo-formation products. Russ J Genet 45, 161–170 (2009). https://doi.org/10.1134/S1022795409020057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795409020057

Keywords

Navigation