Skip to main content
Log in

The effect of salicylic acid on phenylalanine ammonia-lyase and stilbene synthase gene expression in Vitis amurensis Cell Culture

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Resveratrol is a phytoalexin with antibacterial, antiviral and cancer-preventing effects. The objective of the study was to identify PAL and STS genes of Vitis amurensis Rupr. encoding the phenylalanine ammonia-lyases (PAL) and stilbene synthases (STS), the key enzymes involved in the resveratrol biosynthesis. A V. amurensis Rupr. cell culture characterized by low resveratrol level was chosen as a model object. Salicylic acid (SA), a known secondary metabolism inducing agent, was used for enhancement of resveratrol production in this culture. PAL and STS gene expression was analyzed using the reverse transcription PCR and real-time PCR techniques. SA was originally found to specifically enhance the expression of VaPAL3, VaSTS2, VaSTS3, VaSTS4, VaSTS5, VaSTS6, and VaSTS8 of multigene families VaPAL and VaSTS. The results obtained were compared with the earlier published data on PAL and STS gene expression in the rolB transformed V. amurensis cell cultures characterized by high levels of resveratrol. The effects of SA treatment and the rolB transformation on VaPAL and VaSTS gene expression were found to be considerably different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

benzyladenine

DFR:

dihydroflavanol-4-reductases

RT-PCR:

real-time quantitative PCR

PAL:

phenylalanine ammonia-lyase

SA:

salicylic acid

STS:

stilbene synthase

References

  1. Aggarwal, B.B., Bhardwaj, A., Aggarwal, R.S., Seeram, N.P., Shishodia, S., and Takada, Y., Role of Resveratrol in Prevention and Therapy of Cancer: Preclinical and Clinical Studies, Anticancer Res., 2004, vol. 24, pp. 2783–2840.

    CAS  PubMed  Google Scholar 

  2. Docherty, J.J., Fu, M.M., Stiffler, B.S., Limperos, R.J., Pokabla, C.M., and DeLucia, A.L., Resveratrol Inhibition of Herpes Simplex Virus Replication, Antiviral. Res., 1999, vol. 43, pp. 145–155.

    Article  CAS  PubMed  Google Scholar 

  3. Daroch, F., Hoeneisen, M., Gonzalez, C.L., Kawaguchi, F., Salgado, F., Solar, H., and Garcia, A., In Vitro Antibacterial Activity of Chilean Red Wines against Helicobacter pylori, Microbios, 2001, vol. 104, pp. 79–85.

    CAS  PubMed  Google Scholar 

  4. Pervaiz, S., Resveratrol: From Grapevines to Mammalian Biology, Faseb J., 2003, vol. 17, pp. 1975–1985.

    Article  CAS  PubMed  Google Scholar 

  5. Langcake, P. and Pryce, R.J., A New Class of Phytoalexins from Grapevines, Experientia, 1977, vol. 33, pp. 151–152.

    Article  CAS  PubMed  Google Scholar 

  6. Rupprich, N., Hildebrand, H., and Kindl, H., Substrate Specificity In Vivo and In Vitro in the Formation of Stilbenes — Biosynthesis of Rhaponticin, Arch. Biochem. Biophys., 1980, vol. 200, pp. 72–78.

    Article  CAS  PubMed  Google Scholar 

  7. Jaillon, O., Aury, J.M., Noel, B., Policriti, A., Clepet, C., Adam-Blondon, A.F., Weissenbach, J., Quetier, F., and Wincker, P., The Grapevine Genome Sequence Suggests Ancestral Hexaploidization in Major Angiosperm Phyla, Nature, 2007, vol. 449, p. 463.

    Article  CAS  PubMed  Google Scholar 

  8. Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D.A., Cestaro, A., Pruss, D., Pindo, M., Fitzgerald, L.M., Vezzulli, S., Reid, J., Malacarne, G., Iliev, D., Coppola, G., Wardell, B., Micheletti, D., Macalma, T., Facci, M., Mitchell, J.T., Perazzolli, M., Eldredge, G., Gatto, P., Oyzerski, R., Moretto, M., Gutin, N., Stefanini, M., Chen, Y., Segala, C., Davenport, C., Dematté, L., Mraz, A., Battilana, J., Stormo, K., Costa, F., Tao, Q., Si-Ammour, A., Harkins, T., Lackey, A., Perbost, C., Taillon, B., Stella, A., Solovyev, V., Fawcetté, J.A., Sterck, L., Vandepoele, K., Grando, S.M., Toppo, S., Moser, C., Lanchbury, J., Bogden, R., Skolnick, M, Sgaramella, V., Bhatnagar, S.K., Fontana, P., Gutin, A., van de Peer, Y., Salamini, F., and Viola, R., A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety, PLoS One, 2007, vol. 2, p. e1326.

  9. Sparvoli, F., Martin, C., Scienza, A., Gavazzi, G., and Tonelli, C., Cloning and Molecular Analysis of Structural Genes Involved in Flavonoid and Stilbene Biosynthesis in Grape (Vitis vinifera L.), Plant Mol. Biol., 1994, vol. 24, pp. 743—755.

  10. Kao, Y.Y., Harding, S.A., and Tsai, C.J., Differential Expression of Two Distinct Phenylalanine Ammonia-Lyase Genes in Condensed Tannin-Accumulating and Lignifying Cells of Quaking Aspen, Plant Physiol., 2002, vol. 130, pp. 796–807.

    Article  PubMed  Google Scholar 

  11. Chaman, M.E., Copaja, S.V., and Argandoña, V.H., Relationships between Salicylic Acid Content, Phenylalanine Ammonia-Lyase (PAL) Activity, and Resistance of Barley to Aphid Infestation, J. Agric. Food Chem., 2003, vol. 51, pp. 2227–2231.

    Article  CAS  PubMed  Google Scholar 

  12. Raes, J., Rohde, A., Christensen, J.H., van de Peer, Y., and Boerjan, W., Genome-Wide Characterization of the Lignification Toolbox in Arabidopsis, Plant Physiol., 2003, vol. 133, pp. 1051–1071.

    Article  CAS  PubMed  Google Scholar 

  13. Cochrane, F.C., Davin, L.B., and Lewis, N.G., The Arabidopsis Phenylalanine Ammonia-Lyase Gene Family: Kinetic Characterization of the Four PAL Isoforms, Phytochemistry, 2004, vol. 65, pp. 1557–1564.

    Article  CAS  PubMed  Google Scholar 

  14. Kiselev, K.V., Dubrovina, A.S., and Bulgakov, V.P., Phenylalanine Ammonia-Lyase and Stilbene Synthase Gene Expression in rolB Transgenic Cell Cultures of Vitis amurensis, Appl. Microbiol. Biotechnol., 2009, vol. 82, pp. 647–655.

    Article  CAS  PubMed  Google Scholar 

  15. Kiselev, K.V., Dubrovina, A.S., Veselova, M.V., Bulgakov, V.P., Fedoreyev, S.A., and Zhuravlev, Y.N., The rolB Gene-Induced Overproduction of Resveratrol in Vitis amurensis Transformed Cells, J. Biotechnol., 2007, vol. 128, pp. 681–692.

    Article  CAS  PubMed  Google Scholar 

  16. Estruch, J., Schell, J., and Spena, A., The Protein Encoded by the rolB Plant Oncogene Hydrolyses Indole Glucosides, EMBO J., 1991, vol. 10, pp. 3125–3128.

    CAS  PubMed  Google Scholar 

  17. Nilsson, O., Crozier, A., Schmülling, T., Sandberg, G., and Olsson, O., Indole-3-Acetic Acid Homeostasis in Transgenic Tobacco Plants Expressing the Agrobacterium rhizogenes rolB Gene, Plant J., 1993, vol. 3, pp. 681–689.

    Article  CAS  Google Scholar 

  18. Filippini, F., Rossi, V., Marin, O., Trovato, M., Costantino, P., Downey, P.M., Lo, Schiavo, F., and Terzi, M., A Plant Oncogene as a Phosphatase, Nature, 1996, vol. 379, pp. 499–500.

    Article  CAS  PubMed  Google Scholar 

  19. Moriuchi, H., Okamoto, C., Nishihama, R., Yamashita, I., Machida, Y., and Tanaka, N., Nuclear Localization and Interaction of RolB with Plant 14-3-3 Proteins Correlates with Induction of Adventitious Roots by the Oncogene rolB, Plant J., 2004, vol. 38, pp. 260–275.

    Article  CAS  PubMed  Google Scholar 

  20. Bekesiova, I., Nap, J.P., and Mlynarova, L., Isolation of High Quality DNA and RNA from Leaves of the Carnivorous Plant Drosera rotundifolia, Plant Mol. Biol. Rep., 1999, vol. 17, pp. 269–277.

    Article  CAS  Google Scholar 

  21. Kiselev, K.V., Kusaykin, M.I., Dubrovina, A.S., Bezverbny, D.A., Zvyagintseva, T.N., and Bulgakov, V.P., The rolC Gene Induces Expression of a Pathogenesis-Related β-1,3-Glucanase in Transformed Ginseng Cells, Phytochemistry, 2006, vol. 67, pp. 2225–2231.

    Article  CAS  PubMed  Google Scholar 

  22. Persiyanova, E.V., Kiselev, K.V., Bulgakov, V.P., Timchenko, N.F., Chernoded, G.K., and Zhuravlev, Yu.N., Defense Response Mechanisms of Ginseng Callus Cultures Induced by Yersinia pseudotuberculosis, a Human Pathogen, Russ. J. Plant Physiol., 2008, vol. 55, pp. 748–755.

    Article  CAS  Google Scholar 

  23. Dubrovina, A.S., Kiselev, K.V., Veselova, M.V., Isaeva, G.A., Fedoreyev, S.A., and Zhuravlev, Y.N., Enhanced Resveratrol Accumulation in rolB Transgenic Cultures of Vitis amurensis Correlates with Unusual Changes in CDPK Gene Expression, J. Plant Physiol., 2009, vol. 166, pp. 1194–1206.

    Article  CAS  PubMed  Google Scholar 

  24. Kiselev, K.V. and Chernoded, G.K., Somatic Embryogenesis in the Panax ginseng Cell Culture Induced by the rolC Oncogene Is Associated with Increased Expression of WUS and SERK Genes, Russ. J. of Genetics, 2009, vol. 45, pp. 445–452.

    Article  CAS  Google Scholar 

  25. Des Marais, D.L. and Rausher, M.D., Escape from Adaptive Conflict after Duplication in an Anthocyanin Pathway Gene, Nature, 2008, vol. 454, pp. 762–U85.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Kiselev.

Additional information

Original Russian Text © K.V. Kiselev, A.S. Dubrovina, G.A. Isaeva, Y.N. Zhuravlev, 2010, published in Fiziologiya Rastenii, 2010, Vol. 57, No.3, pp. 441–448.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiselev, K.V., Dubrovina, A.S., Isaeva, G.A. et al. The effect of salicylic acid on phenylalanine ammonia-lyase and stilbene synthase gene expression in Vitis amurensis Cell Culture. Russ J Plant Physiol 57, 415–421 (2010). https://doi.org/10.1134/S1021443710030143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443710030143

Key words

Navigation