Skip to main content
Log in

Development and Characterization of Biobased Superabsorbent Materials for Agricultural Applications: Study in Lettuce (Lactuca sativa L.) under Drought Stress

  • NATURAL POLYMERS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The main objective of this research was to develop biobased superabsorbent materials (SAM) able to control humidity in soils. For this purpose, two abundant biopolymers (alginate and chitosan) were studied. Concentration of both polysaccharides, cross-linking time, CaCl2 and acetic acid concentrations were evaluated through Taguchi design. Then, two formulations were selected and fully characterized. Samples were tested in soil substrate in two different concentrations to evaluate the effects in lettuce plants grown under hydric stress. Swelling degree significantly varied with the studied factors (822–8932%, after 24 h in distilled water). The two selected formulations had the minimum acetic acid and CaCl2 concentrations, and cross-linking time tested, but the highest chitosan content, expecting an elicitor effect in the plants. The selected materials showed superabsorbent properties. Addition of 5% w/w of either biobased materials to soil substrates led to noticeably more vigorous specimens after 6 days of drought compared to lettuce grown in substrate without SAM. However, some phytotoxicity is suspected. Further assays are necessary to optimize chitosan content improving soil properties while stimulating plant growth without phytotoxicity. Overall, results showed that Chitosan-Alginate SAMs might be considered as promising sustainable agricultural devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Agriculture and Climate Change—Challenges and Opportunities at the Global and Local Level (FAO, Rome, 2020).

  2. W. Abobatta, Adv. Agric. Environ. Sci. 1, 59 (2018).

    Google Scholar 

  3. B. Song, H. Liang, R. Sun, P. Peng, Y. Jiang, and D. She, Int. J. Biol. Macromol. 144, 219 (2019).

    Article  PubMed  Google Scholar 

  4. S. J. Joshi and R. M. M. Abed, Environ. Processes 4, 463 (2017).

    Article  Google Scholar 

  5. M. E. Abdel-Raouf, S. M. El-Saeed, E. G. Zaki, and A. M. Al-Sabagh, Egypt. J. Pet. 27, 1345 (2018).

    Google Scholar 

  6. W. Tanan, J. Panichpakdee, and S. Saengsuwan, Eur. Polym. J. 112, 678 (2018).

    Article  Google Scholar 

  7. L. Liu, Q. Gao, X. Lu, and H. Zhou, Asian J. Pharm. 11, 673 (2016).

    Google Scholar 

  8. D. Katiyar, A. Hemantaranjan, and B. Singh, Indian J. Plant Physiol. 20, 1 (2015).

    Article  Google Scholar 

  9. G. Skjåk-Bræk and K. I. Draget, in Polymer Science: A Comprehensive Reference, Ed. By M. Moeller and K. Matyjaszewski (Elsevier, Amsterdam, 2012).

    Google Scholar 

  10. M. S. Hasnain, E. Jameel, B. Mohanta, A. K. Dhara, S. Alkahtani, and A. K. Nayak, in Alginates in Drug Delivery, Ed. by A. K. Nayak and Md. S. Hasnain (Acad. Press, London, 2020).

  11. G. K. Wasupalli and D. Verma, Int. J. Biol. Macromol. 114, 10 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. A. M. Alsharabasy, S. A. Moghannem, and W. N. El-Mazny, J. Biomater. Appl. 30, 1071 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. J. Fu, F. Yang, and Z. Guo, New J. Chem. 42, 17162 (2018).

    Article  CAS  Google Scholar 

  14. A. Ćirić, D. Krajišnik, B. Čalija, and L. Đekić, Arh. Farm. 70, 173 (2020).

    Article  Google Scholar 

  15. K. Baysal, A. Z. Aroguz, Z. Adiguzel, and B. M. Baysal, Int. J. Biol. Macromol. 59, 342 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. O. Gåserød, O. Smidsrød, and G. Skjåk-Bræk, Biomaterials 19, 1815 (1998).

    Article  PubMed  Google Scholar 

  17. M. Rinaudo, G. Pavlov, and J. Desbrières, Polymer 40, 7029 (1999).

    Article  CAS  Google Scholar 

  18. I. J. Roh and I. C. Kwon, J. Biomater. Sci., Polym. Ed. 13, 769 (2002).

    Article  CAS  Google Scholar 

  19. B. Tomadoni, C. Casalongué, and V. A. Alvarez, in Polymers for Agri-Food Applications, ed. by T. J. Gutiérrez (Springer-Nature, Cham, 2019).

    Google Scholar 

  20. T. Benhalima, H. Ferfera-Harrar, and D. Lerari, Int. J. Biol. Macromol. 105, 1025 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. L. J. B. Orikiriza, H. Agaba, G. Eilu, J. D. Kabasa, M. Worbes, and A. Hüttermann, J. Environ. Prot. Sci. 4, 713 (2013).

    Article  Google Scholar 

  22. F. L. Mi, H. W. Sung, and S. S. Shyu, Carbohydr. Polym. 48, 61 (2002).

    Article  CAS  Google Scholar 

  23. F. Zheng, L. Chen, P. Zhang, J. Zhou, X. Lu, and W. Tian, Carbohydr. Polym. 230, 1 (2020).

    Google Scholar 

  24. M. G. Sankalia, R. C. Mashru, J. M. Sankalia, V. B. Sutariya, Eur. J. Pharm. Biopharm. 65, 215 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. S. Naghavi Alhosseini, F. Moztarzadeh, S. Kargozar, M. Dodel, and M. Tahriri, Int. J. Polym. Mater. Polym. Biomater. 64, 474 (2015).

    Article  CAS  Google Scholar 

  26. M. Agostini de Moraes, D. Cocenza, F. da Cruz Vasconcellos, L. Fernandes Fraceto, and M. Beppu, J. Environ. Manage. 131, 222 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. J. P. Soares, J. E. Santos, G. O. Chierice, and E. T. G. Cavalheiro, Ecletica Quim. 29, 57 (2004).

    Article  CAS  Google Scholar 

  28. E. Szymańska and K.Winnicka, Mar. Drugs 13, 1819 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. B. E. Teixeira-Costa, B. C. Silva Pereira, G. K. Lopes, and C. T. Andrade, Food Hydrocolloids 109, 106097 (2020). https://doi.org/10.1016/j.foodhyd.2020.106097

  30. X. Wu, Z. Tang, X. Liao, Z. Wang, and H. Liu, Carbohydr. Polym. 247, 116669 (2020). https://doi.org/10.1016/j.carbpol.2020.116669

  31. C. Pereda, D. G. Actis, P. Mendoza Zélis, V. A. Alvarez, and L. M. Sanchez, J. Appl. Polym. Sci. 138, 50261 (2021). https://doi.org/10.1002/app.50261

    Article  CAS  Google Scholar 

  32. M. M. Iftime, G. L. Ailiesei, E. Ungureanu, and L. Marin, Carbohydr. Polym. 223, 115040 (2019). https://doi.org/10.1016/j.carbpol.2019.115040

  33. B. Tomadoni, M. F. Salcedo, A. Y. Mansilla, C. A. Casalongué, and V. A. Alvarez, Eur. Polym. J. 137, 109953 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109953

  34. B. Lupo, A. Maestro, J. M. Gutiérrez, and C. González, Food Hydrocolloids 49, 25 (2015).

    Article  CAS  Google Scholar 

  35. R. G. Sharp, Agronomy 3, 757 (2013).

    Article  Google Scholar 

  36. S. L. Colman, M. F. Salcedo, A. Y. Mansilla, M. J. Iglesias, D. F. Fiol, S. Martín-Saldaña, V. A. Alvarez, A. A. Chevalier, and C. A. Casalongué, Plant Physiol. Biochem. 143, 203 (2019).

    Article  CAS  PubMed  Google Scholar 

  37. G. Asgari-Targhi, A. Iranbakhsh, and Z. O. Ardebili, Plant Physiol. Biochem. 127, 393 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge Lic. Andrés Torres-Nicolini from INTEMA (CONICET-UNMDP) for the TGA analysis. Some figures were created with BioRender.com.

Funding

Financial support obtained from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP 0617), Universidad Nacional de Mar del Plata (15/G539), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) (PICT-2017-0603, PICT-2018-0711 and PICT-2018-0970) is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The experimental work was carried out by M.P. and M.F.S.; data analysis was performed by L.M.S., A.Y.M. and B.T.; the article was written by L.M.S. and B.T.; the article was reviewed by L.M.S., C.C., V.A.A. and B.T.; the article was supervised by L.M.S. and B.T. All authors have read and agreed to publish the manuscript.

Corresponding author

Correspondence to B. Tomadoni.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascual, M., Salcedo, M.F., Sanchez, L.M. et al. Development and Characterization of Biobased Superabsorbent Materials for Agricultural Applications: Study in Lettuce (Lactuca sativa L.) under Drought Stress. Polym. Sci. Ser. A 64, 744–754 (2022). https://doi.org/10.1134/S0965545X22700456

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X22700456

Navigation