Skip to main content
Log in

On Conditions of Formation of Hollow Particles by an Interpolylectrolyte Complex

  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Interpolyelectrolyte complexes formed by linear oppositely charged macromolecules with different affinities for a solvent are studied for the first time using the computer experiment method. It is shown that such complexes self-organize into structures, on the surface of which solvophilic groups are predominantly located. These can be dense spherical particles, hollow vesicle-like particles, and hollow particles with perforated shells. The detailed structure of the obtained morphologies is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. S. Michaels and R. G. Miekka, J. Phys. Chem. 65, 1765 (1961).

    Article  CAS  Google Scholar 

  2. A. B. Zezin, V. B. Rogacheva, V. S. Komarov, and E. F. Razvodovskii, Vysokomol. Soedin., Ser. A 17, 2637 (1975).

    CAS  Google Scholar 

  3. V. A. Izumrudov and A. B. Zezin, Vysokomol. Soedin., Ser. A 18, 2488 (1976).

    CAS  Google Scholar 

  4. A. V. Kabanov and V. A. Kabanov, Bioconjugate Chem. 6, 7 (1995).

    Article  CAS  Google Scholar 

  5. D. V. Pergushov, A. A. Zezin, A. B. Zezin, and A. H. E. Müller, Adv. Polym. Sci. 255, 173 (2014).

    Article  CAS  Google Scholar 

  6. S.-X. Xie, A. A. Baoum, N. A. Alhakamy, and C. J. Berkland, Int. J. Pharm. 547, 274 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. G. Petzold and S. Schwarz, Adv. Polym. Sci. 256, 25 (2014).

    Article  CAS  Google Scholar 

  8. V. A. Izumrudov, A. B. Zezin, and V. A. Kabanov, Russ. Chem. Rev. 60, 792 (1991).

    Article  Google Scholar 

  9. E. Tsuchida, J. Macromol. Sci., Part A: Pure Appl. Chem. 31, 1 (1994).

    Article  Google Scholar 

  10. A. F. Thunemann, M. Muller, H. Dautzenberg, J. F. Joanny, and H. Lowne, Adv. Polym. Sci. 166, 113 (2004).

    Article  CAS  Google Scholar 

  11. D. V. Pergushov, V. A. Izumrudov, A. B. Zezin, and V. A. Kabanov, Vysokomol. Soedin., Ser. A 37, 1739 (1995).

    CAS  Google Scholar 

  12. V. A. Kabanov, V. G. Sergeyev, O. A. Pyshkina, A. A. Zinchenko, A. B. Zezin, J. G. H. Joosten, J. Brackman, and K. Yoshikawa, Macromolecules 33, 9587 (2000).

    Article  CAS  Google Scholar 

  13. E. Spruijt, F. A. M. Leermakers, R. Fokkink, R. Schweins, A. A. van Well, M. A. Cohen Stuart, and J. van der Gucht, Macromolecules 46, 4596 (2013).

    Article  CAS  Google Scholar 

  14. D. Priftis, X. Xia, K. O. Margossian, S. L. Perry, L. Leon, J. Qin, J. J. de Pablo, and M. V. Tirrell, Macromolecules 47, 3076 (2014).

    Article  CAS  Google Scholar 

  15. C. Dähling, G. Lotze, M. Drechsler, H. Mori, D. V. Pergushov, and F. A. Plamper, Soft Matter 12, 5127 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. T. N. Nekrasova, V. D. Pautov, T. D. Anan’eva, T. K. Meleshko, I. V. Ivanov, and A. V. Yakimansky, Polym. Sci., Ser. C 60, S172 (2018).

    Article  Google Scholar 

  17. D. Srivastava and M. Muthukumar, Macromolecules 27, 1461 (1994).

    Article  CAS  Google Scholar 

  18. R. G. Winkler, M. O. Steinhauser, and P. Reineker, Phys. Rev. E: Stat. Nonlinear, Soft Matter Phys. 66, 021802 (2002).

    Google Scholar 

  19. R. G. Winkler, New J. Phys. 6, 1 (2004).

    Article  CAS  Google Scholar 

  20. Z. Ou and M. Muthukumar, J. Chem. Phys. 124, 154902 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. J. Kriz, H. Dautzenberg, J. Dybal, and D. Kurkova, Langmuir 18, 9594 (2002).

    Article  CAS  Google Scholar 

  22. A. A. Lazutin, A. N. Semenov, and V. V. Vasilevskaya, Macromol. Theor. Simul. 21, 328 (2012).

    Article  CAS  Google Scholar 

  23. V. V. Vasilevskaya, L. Leclercq, M. Boustta, M. Vert, and A. R. Khokhlov, Macromolecules 40, 5934 (2007).

    Article  CAS  Google Scholar 

  24. M. K. Krotova, V. V. Vasilevskaya, L. Leclercq, M. Boustta, M. Vert, and A. R. Khokhlov, Macromolecules 42, 7495 (2009).

    Article  CAS  Google Scholar 

  25. T. Etrych, L. Leclercq, M. Boustta, and M. Vert, Eur. J. Pharm. Sci. 25, 281 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. M. Boustta, L. Leclercq, M. Vert, and V. Vasilevskaya, Macromolecules 47, 3574 (2014).

    Article  CAS  Google Scholar 

  27. L. Leclercq, M. Boustta, M. Vert, and V. V. Vasilevskaya, J. Polym. Sci., Part B: Polym. Phys. 54, 1717 (2016).

    Article  CAS  Google Scholar 

  28. S. K. Filippov, C. Koňák, P. Kopečková, L. Starovoytova, M. Špírková, and P. Štěpánek, Langmuir 26, 4999 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. V. A. Baulin and E. Trizac, Soft Matter 8, 6755 (2012).

    Article  CAS  Google Scholar 

  30. Y. A. Antonov, P. Moldenaers, and R. Cardinaels, Food Hydrocolloids 62, 102 (2017).

    Article  CAS  Google Scholar 

  31. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  32. E. L. Pollock and J. Glosli, Comput. Phys. Commun. 95 (2–3), 93 (1996).

    Article  CAS  Google Scholar 

  33. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1990).

    Google Scholar 

  34. V. V. Vasilevskaya, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 35, 10103 (2003).

    Article  CAS  Google Scholar 

  35. W. Burchard, Adv. Polym. Sci. 48, 1 (1983).

    Article  CAS  Google Scholar 

  36. S. U. Egelhaaf and P. Schurtenberger, J. Phys. Chem. 98, 8560 (1994).

    Article  CAS  Google Scholar 

  37. V. V. Vasilevskaya, A. A. Klochkov, A. A. Lazutin, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 37, 5444 (2004).

    Article  CAS  Google Scholar 

  38. T. S. Kale, A. Klaikherd, B. Popere, and S. Thayumanavan, Langmuir 25, 9660 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. A. A. Glagoleva, V. V. Vasilevskaya, and A. R. Khokhlov, Macromol. Theory Simul. 24, 393 (2015).

    Article  CAS  Google Scholar 

  40. A. A. Glagoleva and V. V. Vasilevskaya, Polym. Sci., Ser. A 58, 292 (2016).

    Article  CAS  Google Scholar 

  41. D. E. Larin, A. A. Glagoleva, E. N. Govorun, and V. V. Vasilevskaya, Polymer 146, 230 (2018).

    Article  CAS  Google Scholar 

  42. V. V. Vasilevskaya and E. N. Govorun, Polym. Rev. 59, 625 (2019). https://doi.org/10.1080/15583724.2019.1599013

  43. V. V. Vasilevskaya and V. A. Ermilov, Polym. Sci., Ser. A 53, 846 (2011).

    Article  CAS  Google Scholar 

  44. V. Sadovnichy, A. Tikhonravov, Vl. Voevodin, and V. Opanasenko, in Contemporary High Performance Computing: From Petascale toward Exascale, Ed. by J. S. Vetter (CRC Press, Boca Raton, 2013), p. 283.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University [44].

Funding

The study was supported by the Russian Science Foundation (project 18-73-00335). V.V. Vasilevskaya thanks the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Glagoleva or V. V. Vasilevskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glagoleva, A.A., Vasilevskaya, V.V. On Conditions of Formation of Hollow Particles by an Interpolylectrolyte Complex. Polym. Sci. Ser. A 61, 780–788 (2019). https://doi.org/10.1134/S0965545X19060038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X19060038

Navigation