Skip to main content
Log in

Self-assembly of polymer layers with mobile grafting points: Computer simulation

  • Modeling
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The Monte Carlo method is used to study macromolecule layers with mobile grafting points during deterioration in the solvent quality. If the chains are rigidly grafted onto the surface, the micelle core is bonded to the surface through chain fragments that are strongly extended along the surface, but if the points are fairly mobile, the micelles are dense aggregates maximally segregated from the surface. In addition, an increase in the mobility of the chains leads to increase in the mean aggregation number of the micelles, its dispersion, and height of the aggregate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kanazawa, Y. Matsushima, and T. Okano, Trac Trends Anal. Chem. 17, 435 (1998).

    Article  CAS  Google Scholar 

  2. A. Kumar, A. Srivastava, I. Yu. Galaev, and B. Mattiasson, Prog. Polym. Sci. 32, 1205 (2007).

    Article  CAS  Google Scholar 

  3. B. Zhao and W. J. Brittain, Macromolecules 33, 8813 (2000).

    Article  CAS  Google Scholar 

  4. B. Zhao, W. J. Brittain, W. Zhou, and S. Z. D. Cheng, Macromolecules 33, 8821 (2000).

    Article  CAS  Google Scholar 

  5. B. Zhao, W. J. Brittain, W. Zhou, and S. Z. D. Cheng, J. Am. Chem. Soc. 122, 2407 (2000).

    Article  CAS  Google Scholar 

  6. W. J. Brittain, S. G. Boyes, A. M. Granville, M. Baum, B. K. Mirous, B. Akgun, B. Zhao, C. Blickle, and M. D. Foster, Adv. Polym. Sci. 198, 125 (2006).

    Article  CAS  Google Scholar 

  7. X. Gao, W. Feng, S. Zhu, H. Sheardown, and J. L. Brash, Langmuir 24, 8303 (2008).

    Article  CAS  Google Scholar 

  8. P. Yang and Y. Han, Macromol. Rapid Commun. 30, 1509 (2009).

    Article  CAS  Google Scholar 

  9. S. B. Rahane, J. A. Floyd, A. T. Metters, and S. M. Kilbey Ii, Adv. Funct. Mater. 18, 1232 (2008).

    Article  CAS  Google Scholar 

  10. K. Yu, H. Wang, L. Xue, and Y. Han, Langmuir 23, 1443 (2007).

    Article  CAS  Google Scholar 

  11. K. Yu and Y. Han, Soft Matter 5, 759 (2009).

    Article  CAS  Google Scholar 

  12. B. M. D. O’Driscoll, G. H. Griffiths, M. W. Matsen, S. Perrier, V. Ladmiral, and I. W. Hamley, Macromolecules 43, 8177 (2010).

    Article  Google Scholar 

  13. B. M. D. O’Driscoll, G. E. Newby, and I. W. Hamley, Polym. Chem. 2, 619 (2011).

    Article  Google Scholar 

  14. E. B. Zhulina, C. Singh, and A. C. Balazs, Macromolecules 29, 6338 (1996).

    Article  CAS  Google Scholar 

  15. E. B. Zhulina, C. Singh, and A. C. Balazs, Macromolecules 29, 8254 (1996).

    Article  CAS  Google Scholar 

  16. D. Meng and Q. Wang, J. Chem. Phys. 130, 134904 (2009).

    Article  Google Scholar 

  17. Y. Yin, P. Sun, B. Li, T. Chen, Q. Jin, D. Ding, and A.-C. Shi, Macromolecules 40, 5161 (2007).

    Article  CAS  Google Scholar 

  18. M. W. Matsen and G. H. Griffiths, Eur. Phys. J. E 29, 219 (2009).

    Article  CAS  Google Scholar 

  19. O. A. Guskova and C. Seidel, Macromolecules 44, 671 (2011).

    Article  CAS  Google Scholar 

  20. G. Brown, A. Chakrabarti, and J. F. Marko, Macromolecules 28, 7817 (1996).

    Article  Google Scholar 

  21. P. G. Ferreira and L. Leibler, J. Chem. Phys. 105, 9362 (1996).

    Article  CAS  Google Scholar 

  22. M. Müller, in Handbook of Materials Modeling, Ed. by S. Yip (Springer, Berlin, 2005), p. 2599.

    Chapter  Google Scholar 

  23. V. Ermilov, A. Lazutin, and A. Halperin, Macromolecules 43, 3511 (2010).

    Article  CAS  Google Scholar 

  24. E. Tsuchida and K. Abe, Adv. Polym. Sci. 45, 1 (1982).

    Article  Google Scholar 

  25. F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 (1990).

    Article  CAS  Google Scholar 

  26. I. Ya. Erukhimovich and A. R. Khokhlov, Polymer Science, Ser. A 35, 1522 (1993) [Vysokomol. Soedin., Ser. A 35, 1808 (1993)].

    Google Scholar 

  27. K. Binder, Adv. Polym. Sci. 112, 181 (1994).

    Article  CAS  Google Scholar 

  28. M. G. Brereton and T. A. Vilgis, J. Phys. I 2, 581 (1992).

    Article  CAS  Google Scholar 

  29. I. Ya. Erukhimovich and A. V. Dobrynin, Pis’ma Zh. Eksp. Teor. Fiz. 57, 116 (1993).

    Google Scholar 

  30. A. V. Dobrynin and I. Ya. Erukhimovich, Zh. Eksp. Teor. Fiz. 104, 2838 (1993).

    Google Scholar 

  31. V. V. Vasilevskaya, A. A. Klochkov, P. G. Khalatur, A. R. Khokhlov, and G. Brinke, Macromol. Theory Simul. 10, 389 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Glagolev.

Additional information

Original Russian Text © M.K. Glagolev, V.V. Vasilevskaya, A.R. Khokhlov, 2012, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2012, Vol. 54, No. 9, pp. 1447–1457.

This work was supported by the Program of Basic Research of the State Academies of Science for 2008–2012 and the project of the Ministry of Education and Science of the Russian Federation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glagolev, M.K., Vasilevskaya, V.V. & Khokhlov, A.R. Self-assembly of polymer layers with mobile grafting points: Computer simulation. Polym. Sci. Ser. A 54, 767–777 (2012). https://doi.org/10.1134/S0965545X12090027

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X12090027

Keywords

Navigation