Skip to main content
Log in

Effect of temperature on the intrinsic viscosity and conformation of different pectins

  • Natural Polymers
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The effects of temperature on the intrinsic viscosity and on the conformation of pectin obtained from Citrus, Apple and Sunflower in a 0.17M NaCl solution were studied. Mark-Houwink plots for Orange, Apple and Sunflower pectin were obtained using HPSEC with online light scattering and viscosity detection. The intrinsic viscosity and flow activation energy E a of pectin from the sources studied were measured over the temperature range 20–60°C. E a values were 0.67, 0.69, 1.34, and 1.44 × 107 J/(kmol) for commercial Citrus, Orange, Sunflower and Apple pectin, respectively. Intrinsic viscosity decreased linearly with increasing temperature, for all pectins except Apple one. These results clearly indicated that Apple pectin underwent structural changes that were more drastic than those that occurred for pectin from the other sources. E a increased with decreasing weight average molar mass M w indicating that pectin with low M w were more asymmetric than pectin with higher values of M w. Changes in the Huggins coefficients K h with temperature for pectin from the various sources were attributed to the ability of pectin to aggregate, disaggregate and re-aggregate according to the temperature at which it was stored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Mohnen, Curr. Opin. Plant Biol. 11, 266 (2008).

    Article  CAS  Google Scholar 

  2. D. G. Oakenfull, in The Chemistry and Technology of Pectin, Ed. by R. H. Walter (Acc., San Diego, 1991).

    Google Scholar 

  3. M. A. V. Axelos and J.-F. Thibault, in The Chemistry and Technology of Pectin, Ed. by R. H. Walter (Acc., San Diego, 1991).

    Google Scholar 

  4. M. P. Tombs and S. E. Harding, An Introduction to Polysaccharide Biotechnology (Taylor and Francis, London, 1998).

    Google Scholar 

  5. T. M. C. C. Filisetti-Cozzi and N. C. Carpita, Anal. Biochem. 197, 157 (1991).

    Article  CAS  Google Scholar 

  6. C. P. Kelco, Control Methods. Determination of Pectin DE, 3 (2001).

  7. M. L. Fishman, H. K. Chau, F. Kolpak, and J. J. Brady, Agric. Food Chem. 49, 4494 (2001).

    Article  CAS  Google Scholar 

  8. Z. K. Muhidinov, M. L. Fishman, R. M. Gorshkova, et al., Kazakh. Chem. J. 21, 60 (2008).

    Google Scholar 

  9. L. E. Nielsen, Polymer Rheology (Marcel Dekker, New York, 1977).

    Google Scholar 

  10. R. H. Chen and W. C. Lin, J Fish. Soc. Taiwan 19, 299 (1992).

    Google Scholar 

  11. M. Rinaudo and A. Domard, in Chitin and Chitosan: Sources, Chemistry, Biochemistry, Physical Properties and Applications, Ed. by G. Skiak-Braek, T. Anthonsen, and P. Sandford (Elsevier Applied Science, London, 1989), p. 71.

    Google Scholar 

  12. B. Launay, J. L. Doublier, and G. Cuvelier, in Functional Properties of Food Macromolecules, Ed. by J. R. Mitchell and D. A. Ledward (Elsevier Applied Science, London, 1986), p. 1.

    Google Scholar 

  13. M. Bohdanecky and J. Kovar, Viscosity of Polymer Solutions (Elsevier, Amsterdam, 1982).

    Google Scholar 

  14. M. L. Fishman, H. K. Chau, P. D. Hoagland, and K. Ayyad, Carbohydr. Res. 323, 126 (2000).

    Article  CAS  Google Scholar 

  15. M. L. Fishman, H. K. Chau, P. D. Hoagland, and A. T. Hotchkiss, Food Hydrocollloids 20, 1170 (2006).

    Article  CAS  Google Scholar 

  16. M. L. Fishman, P. H. Cooke, H. K. Chau, et al., Biomacromolecules 8, 573 (2007).

    Article  CAS  Google Scholar 

  17. M. L. Fishman, P. H. Cooke, B. Levaj, et al., Arch. Biochem. Biophys. 294, 253 (1992).

    Article  CAS  Google Scholar 

  18. M. L. Fishman, P. H. Walker, H. K. Chau, and A. T. Hotchkiss, Biomacromolecules 4, 880 (2003).

    Article  CAS  Google Scholar 

  19. M. L. Fishman, P. H. Cooke, A. T. Hotchkiss, and W. Damert, Carbohydr. Res. 248, 303 (1993).

    Article  CAS  Google Scholar 

  20. G. A. Morris, T. J. Foster and S. E. Harding, Carbohydr. Polym. 48, 361 (2002).

    Article  CAS  Google Scholar 

  21. M. A. V. Axelos and M. Branger, Food Hydrocolloids 7, 91(1993).

    Article  CAS  Google Scholar 

  22. M. A. Rao, in Rheology of Fluid and Semisolid Foods: Principal and Application (Chapman and Hall Food Science Book, New York, 1999), p. 12.

    Google Scholar 

  23. R. Berger, Macromol. Chem. 102, 24 (1967).

    Article  CAS  Google Scholar 

  24. W. Wang and D. Xu, Int. J. Biol. Macromol. 16, 149 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. K. Muhidinov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muhidinov, Z.K., Fishman, M.L., Avloev, K.K. et al. Effect of temperature on the intrinsic viscosity and conformation of different pectins. Polym. Sci. Ser. A 52, 1257–1263 (2010). https://doi.org/10.1134/S0965545X10120035

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X10120035

Keywords

Navigation