Skip to main content
Log in

Amphiphilic comb macromolecules with different distribution statistics of side-chain grafting sites: Mathematical modeling

  • Modeling
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The influence of the distribution statistics of side-chain grafting sites on the conformational properties of amphiphilic comblike macromolecules immersed in a solvent that is poor for the main chain and good for the side chains was studied. It was shown that the coil-globule transition for macromolecules with the protein-like distribution of side-chain grafting sites occurs at higher temperatures, wherein the size of the proteinlike macromolecules is generally smaller than that of the corresponding regular macromolecules. Regardless of distribution statistics of side-chain grafting sites, the coil-globule transition of comb macromolecules passes through the step of the formation of the beads-on-a-string conformation composed of micelle-like beads. The temperature dependence curves of the heat capacity exhibit at least two maximums associated with the coil-globule transition per se and the coalescence of the beads into a single globule. The coil-globule transition temperature is slightly dependent upon the degree of polymerization of the main chain and drops with a decrease in the degree of polymerization of the side chains. It was found that comb macromolecules can form spherical, disklike, or cylindrical globules, depending on the structural parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Block Copolymers in Nanoscience, Ed. by M. Lazzari, G. Liu, and S. Lecommandoux (Wiley-VCH, Weinheim, 2006).

  2. I. M. Okhapkin, E. E. Makhaeva, and A. R. Khokhlov, Colloid Polym. Sci. 284, 117 (2005).

    Article  CAS  Google Scholar 

  3. I. M. Okhapkin, A. A. Askadskii, V. A. Markov, et al., Colloid Polym. Sci. 284, 575 (2006).

    Article  CAS  Google Scholar 

  4. A. Goldar and J.-L. Sikorav, Eur. Phys. J., E 14, 211 (2004).

    CAS  Google Scholar 

  5. V. V. Vasilevskaya, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 36, 10103 (2003).

    Article  CAS  Google Scholar 

  6. V. V. Vasilevskaya, A. A. Klochkov, A. A. Lazutin, et al., Macromolecules 37, 5444 (2004).

    Article  CAS  Google Scholar 

  7. V. V. Vasilevskaya, V. A. Markov, P. G. Khalatur, and A. R. Khokhlov, J. Chem. Phys. 124, 144914 (2006).

    Article  Google Scholar 

  8. V. A. Markov, V. V. Vasilevskaya, P. G. Khalatur, et al., Macromol. Symp. 252, 24 (2007).

    Article  CAS  Google Scholar 

  9. V. A. Ermilov, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 49, 89 (2007) [Vysokomol. Soedin., Ser. A 49, 109 (2007)].

    Google Scholar 

  10. T. M. Birshtein, O. V. Borisov, E. B. Zhulina, et al., Vysokomol. Soedin., Ser. A 29, 1169 (1987).

    CAS  Google Scholar 

  11. Y. Rouault and O. V. Borisov, Macromolecules 29, 2605 (1996).

    Article  CAS  Google Scholar 

  12. G. H. Fredrickson, Macromolecules 26, 2825 (1993).

    Article  CAS  Google Scholar 

  13. A. Subbotin, M. Saariaho, O. Ikkala, and G. Ten Brinke, Macromolecules 33, 3447 (2000).

    Article  CAS  Google Scholar 

  14. M. Saariaho, A. Subbotin, I. Szleifer, et al., Macromolecules 32, 4439 (1999).

    Article  CAS  Google Scholar 

  15. V. V. Vasilevskaya, L. A. Gusev, A. R. Khokhlov, et al., Macromolecules 34, 5019 (2001).

    Article  CAS  Google Scholar 

  16. H. Kosonen, S. Valkama, J. Ruokolainen, et al., Eur. Phys. J., E 10, 69 (2003).

    CAS  Google Scholar 

  17. E. Yu. Kramarenko, O. S. Pevnaya, and A. R. Khokhlov, J. Chem. Phys. 122, 084902 (2005).

    Article  Google Scholar 

  18. O. V. Borisov and E. B. Zhulina, Macromolecules 38, 2506 (2005).

    Article  CAS  Google Scholar 

  19. A. S. Ushakova, E. N. Govorun, and A. R. Khokhlov, J. Phys.: Condens. Matter 18, 915 (2006).

    CAS  Google Scholar 

  20. J. Virtanen, C. Baron, and H. Tenhu, Macromolecules 33, 336 (2000).

    Article  CAS  Google Scholar 

  21. J. Virtanen and H. Tenhu, Macromolecules 33, 5970 (2000).

    Article  CAS  Google Scholar 

  22. E. N. Govorun, V. A. Ivanov, A. R. Khokhlov, et al., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 64, 040903 (2001).

    Article  CAS  Google Scholar 

  23. V. I. Lozinskii, I. A. Simenel, E. A. Kurskaya, et al., Dokl. Akad. Nauk 375, 273 (2000).

    Google Scholar 

  24. V. I. Lozinsky, I. A. Simenel, V. K. Kulakova, et al., Macromolecules 36, 7308 (2003).

    Article  CAS  Google Scholar 

  25. M. H. Siu, H. Y. Liu, X. X. Zhu, and C. Wu, Macromolecules 36, 2103 (2003).

    Article  CAS  Google Scholar 

  26. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1990).

    Google Scholar 

  27. H. C. Andersen, J. Comput. Phys. 52, 24 (1983).

    Article  CAS  Google Scholar 

  28. P. G. Khalatur, Vysokomol. Soedin., Ser. A 22, 2050 (1980).

    CAS  Google Scholar 

  29. P. G. Khalatur, Vysokomol. Soedin., Ser. A 22, 2226 (1980).

    CAS  Google Scholar 

  30. A. R. Khokhlov and P. G. Khalatur, Phys. Rev. Lett. 82, 3456 (1999).

    Article  CAS  Google Scholar 

  31. J. M. P. Van den Oever, F. A. M. Leermakers, G. J. Fleer, et al., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 65, 041708 (2002).

    Article  Google Scholar 

  32. E. N. Govorun, A. R. Khokhlov, and A. N. Semenov, Eur. Phys. J., E 12, 255 (2003).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vasilevskaya.

Additional information

Original Russian Text © A.A. Starostina, A.A. Klochkov, V.V. Vasilevskaya, A.R. Khokhlov, 2008, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2008, Vol. 50, No. 9, pp. 1691–1703.

This work was supported by the Russian Foundation for Basic Research, project no. 05-03-33077; the Netherlands Organization for Scientific Research (NWO), project no. 047.011.2005.011; and the Russian Academy of Sciences Division of Chemistry and Materials Science under the basic research program “Design and Study of Next-Generation Macromolecules and Macromolecular Structures,” project “Investigation of Amphiphilic Macromolecules Exemplified By Structurally Complex Comb Polycations.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starostina, A.A., Klochkov, A.A., Vasilevskaya, V.V. et al. Amphiphilic comb macromolecules with different distribution statistics of side-chain grafting sites: Mathematical modeling. Polym. Sci. Ser. A 50, 1008–1017 (2008). https://doi.org/10.1134/S0965545X08090101

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X08090101

Keywords

Navigation