Skip to main content
Log in

Crack propagation behavior in rubber materials

  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Within the linear viscoelastic theory, crack tip fields are calculated at various crack tip velocities. A transition from rubbery to glassy material behavior in the vicinity of the crack tip can be observed. Shear and bulk behavior is analyzed separately. Whereas the increase of tearing energy at higher crack tip velocities can be ascribed to the shear behavior, bulk behavior influences the fracture mechanism. The results support experimental investigations that the instability separating stable from unstable crack propagation is related to a change in the fracture mechanism. At low crack tip velocities, material separation is the result of formation, growth, and coalescence of cavities. At high crack tip velocities, cavitation is suppressed and fracture is driven by a rather brittle mechanism resulting in a decreased amount of energy to propagate the fracture process zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Rivlin and A. G. Thomas, J. Polym. Sci. 10, 291 (1953}).

    Article  CAS  Google Scholar 

  2. A. A. Griffith, Philos. Trans. R. Soc. London, A 221, 163 (1920).

    Article  Google Scholar 

  3. B. N. J. Persson and E. Brener, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 71, 036123 (2005).

    Article  CAS  Google Scholar 

  4. B. N. J. Persson, O. Ahlbohr, G. Heinrich, and H. Ueba, J. Phys.: Condens. Matter 17, 1071 (2005).

    Google Scholar 

  5. Z. Major, Ch. Feichter, R. Steinberger, and R. W. Lang, Fracture of Nano and Engineering Materials and Structure, Ed. by E. E. Gdoutos (Springer, Dordrecht, 2006).

  6. K. Tsunoda, J. J. C. Busfield, C. K. L. Davis, and A. G. Thomas, J. Mater. Sci. 35, 5187 (2000).

    Article  CAS  Google Scholar 

  7. A. N. Gent and C. Wang, J. Mater. Sci. 26, 3392 (1991).

    Article  Google Scholar 

  8. G. Strobl, The Physics of Polymers (Springer, Berlin, 1997).

    Book  Google Scholar 

  9. F. R. Schwarzl, Polymermechanik: Struktur und mechanisches Verhalten von Polymeren (Springer, Berlin, 1990).

    Book  Google Scholar 

  10. T. L. Anderson, Fracture Mechanics: Fundamentals and Applications (CRC, Boca Raton, 1995).

    Google Scholar 

  11. M. F. Kaninnen and C. H. Popelar, Advanced Fracture Mechanics (Oxford Univ. Press, New York, 1985).

    Google Scholar 

  12. G. A. C. Graham, Q. Appl. Math. 26, 167 (1968).

    Google Scholar 

  13. L. B. Freund, Dynamic Fracture Mechanics (Cambridge Univ. Press, Cambridge, 1990).

    Book  Google Scholar 

  14. T. Horst and G. Heinrich (in preparation).

  15. J. R. Rice, J. Appl. Mech. 35, 376 (1968).

    Article  Google Scholar 

  16. G. R. Irwin, J. Appl. Mech. 24, 361 (1957).

    Google Scholar 

  17. S. Aoki, K. Kishimoto, and M. Sakata, Comput. Mech. 2, 54 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Horst.

Additional information

Published in Russian in Vysokomolekulyarnye Soedineniya, Ser. A, 2008, Vol. 50, No. 5, pp. 882–891.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horst, T., Heinrich, G. Crack propagation behavior in rubber materials. Polym. Sci. Ser. A 50, 583–590 (2008). https://doi.org/10.1134/S0965545X08050131

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X08050131

Keywords

Navigation