Skip to main content
Log in

Presure Boundary Conditions in the Collocated Finite-Volume Method for the Steady Navier–Stokes Equations

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The pressure boundary conditions for the steady-state solution of the incompressible Navier–Stokes equations with the collocated finite-volume method are discussed. This work is based on inf-sup stable coupled flux approximation. The flux is derived based on the linearity assumption of the velocity and pressure unknowns that yields one-sided flux expressions. Enforcing continuity of these expressions on internal interface we reconstruct the interface velocity and pressure and obtain single continuous flux. As a result, the conservation for the momentum and the divergence is discretely exact. However, on boundary interfaces additional pressure boundary condition is required to reconstruct the interface pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. K. Terekhov, “Fully-implicit collocated finite-volume method for the unsteady incompressible Navier–Stokes problem,” in Numerical Geometry, Grid Generation, and Scientific Computing (Springer, Cham, 2021), pp. 361–374.

    Google Scholar 

  2. P. M. Gresho, “On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix: Part 1. Theory,” Int. J. Numer. Methods Fluids 11 (5), 587–620 (1990).

    Article  MathSciNet  Google Scholar 

  3. K. Terekhov, “Collocated finite-volume method for the incompressible Navier–Stokes problem,” J. Numer. Math. 29 (1), 63–79 (2021).

    MathSciNet  MATH  Google Scholar 

  4. A. Bouchnita, K. Terekhov, P. Nony, Yu. Vassilevski, and V. Volpert, “A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions,” PLoS One 15 (7), e0235392 (2020).

  5. Yu. Vassilevski, K. Terekhov, K. Nikitin, and I. Kapyrin, Parallel Finite Volume Computation on General Meshes (Springer International, Berlin, 2020).

    Book  Google Scholar 

  6. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow (Gordon and Breach, New York, 1969).

    MATH  Google Scholar 

  7. V. I. Lebedev, “Difference analogues of orthogonal decompositions, basic differential operators and some boundary problems of mathematical physics I,” USSR Comput. Math. Math. Phys. 4 (3), 69–92 (1964).

    Article  Google Scholar 

  8. F. H. Harlow and J. E. Welch, “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface,” Phys. Fluids 8 (12), 2182–2189 (1965).

    Article  MathSciNet  Google Scholar 

  9. M. A. Olshanskii, K. M. Terekhov, and Yu. V. Vassilevski, “An octree-based solver for the incompressible Navier–Stokes equations with enhanced stability and low dissipation,” Comput. Fluids 84, 231–246 (2013).

    Article  MathSciNet  Google Scholar 

  10. B. Perot, “Conservation properties of unstructured staggered mesh schemes,” J. Comput. Phys. 159 (1), 58–89 (2000).

    Article  MathSciNet  Google Scholar 

  11. C. M. Rhie and W. L. Chow, “Numerical study of the turbulent flow past an airfoil with trailing edge separation,” AIAA J. 21 (11), 1525–1532 (1983).

    Article  Google Scholar 

  12. R. Brewster, C. Carpenter, E. Volpenhein, E. Baglietto, and J. Smith, “Application of CD-Adapco best practices to NESTOR OMEGA MVG benchmark exercises using STAR-CCM+,” Proceedings of NURETH-16 (Chicago, IL, 2015).

  13. ANSYS CFX-Solver Theory Guide: ANSYS CFX Release 11.0 (2006).

  14. J. D. Marković, N. Lj Lukić, J. D. Ilić, B. G. Nikolovski, M. N. Sovilj, and I. M. Šijački, “Using the ANSYS FLUENT for simulation of two-sided lid-driven flow in a staggered cavity,” Acta Period. Technol. 43, 169–178 (2012).

    Article  Google Scholar 

  15. D. R. Rutkowski, A. Roldán-Alzate, and K. M. Johnson, “Enhancement of cerebrovascular 4D flow MRI velocity fields using machine learning and computational fluid dynamics simulation data,” Sci. Rep. 11 (1), 1–11 (2021).

    Article  Google Scholar 

  16. F. P. Kärrholm, “Rhie–Chow interpolation in OpenFOAM” (Department of Applied Mechanics, Chalmers University of Technology, Goteborg, Sweden, 2006).

    Google Scholar 

  17. K. Terekhov and Yu. Vassilevski, “Finite volume method for coupled subsurface flow problems: I. Darcy problem,” J. Comput. Phys. 395, 298–306 (2019).

    Article  MathSciNet  Google Scholar 

  18. K. Terekhov, “Multi-physics flux coupling for hydraulic fracturing modelling within INMOST platform,” Russ. J. Numer. Anal. Math. Model. 35 (4), 223–237 (2020).

    Article  MathSciNet  Google Scholar 

  19. L. Agélas, R. Eymard, and R. Herbin. “A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media,” Compt. Rend. Math. 347, 673–676 (2009).

    Article  MathSciNet  Google Scholar 

  20. K. Terekhov, B. Mallison, and H. Tchelepi, “Cell-centered nonlinear finite-volume methods for the heterogeneous anisotropic diffusion problem,” J. Comput. Phys. 330, 245–267 (2017).

    Article  MathSciNet  Google Scholar 

  21. K. Terekhov, “Cell-centered finite-volume method for heterogeneous anisotropic poromechanics problem,” J. Comput. Appl. Math. 365, 112357 (2020).

  22. K. Terekhov and H. Tchelepi, “Cell-centered finite-volume method for elastic deformation of heterogeneous media with full-tensor properties,” J. Comput. Appl. Math. 364, 112331 (2020).

  23. P. M. Gresho and R. L. Sani, “On pressure boundary conditions for the incompressible Navier–Stokes equations,” Int. J. Numer. Methods Fluids 7 (10), 1111–1145 (1987).

    Article  Google Scholar 

  24. K. Terekhov, “Parallel multilevel linear solver within INMOST platform,” in Supercomputing, Ed. by V. Voevodin and S. Sobolev (Springer, Cham, 2020), pp. 297–309.

    Google Scholar 

  25. K. Terekhov and Yu. Vassilevski, “INMOST parallel platform for mathematical modeling and applications,” in Supercomputing, Ed. by V. Voevodin and S. Sobolev (Springer, Cham, 2020), pp. 230–241.

    Google Scholar 

  26. K. Terekhov and Yu. Vassilevski, “Mesh modification and adaptation within INMOST programming platform,” in Numerical Geometry, Grid Generation, and Scientific Computing (Springer, Cham, 2019), pp. 243–255.

    Google Scholar 

  27. C. R. Ethier and D. A. Steinman, “Exact fully 3D Navier–Stokes solutions for benchmarking,” Int. J. Numer. Methods Fluids 19 (5), 369–375 (1994).

    Article  Google Scholar 

  28. U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method,” J. Comput. Phys. 48 (3), 387–411 (1982).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation through the grant 19-71-10094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Terekhov.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terekhov, K.M. Presure Boundary Conditions in the Collocated Finite-Volume Method for the Steady Navier–Stokes Equations. Comput. Math. and Math. Phys. 62, 1345–1355 (2022). https://doi.org/10.1134/S0965542522080139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542522080139

Keywords:

Navigation